

Die Architekten der Konnektivität

TELEGÄRTNER KARL GÄRTNER GMBH DATENNETZE MIT TWISTED-PAIR-KABEL 2025

PlanetWissen

05. und 06. Februar 2025, Elbcampus Hamburg-Harburg

Zukunftssichere Datennetze:

- Anforderungen an Ethernet-Signale und Twisted-Pair-Kabel
- **Telegärtner** Grundlagen (passiv und aktiv)
 - Normung DIN EN 50173 Netzanwendung, Frequenz und Länge
 - Umsetzung der Normung für eine Lebenserwartung von mehr als 10 Jahren
 - Lösungen von Telegärtner: AMJ2000, AMJ-SL, AMJ-4x90

... aus Steinenbronn.

560 Mitarbeiter

Zentrale in Steinenbronn

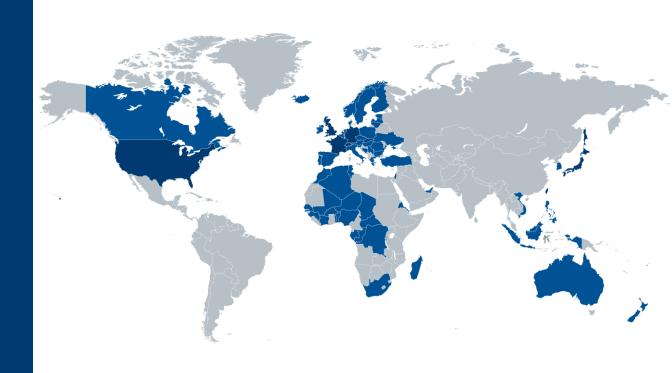
Telegärtner Karl Gärtner GmbH Steinenbronn

Das Entwicklungs- und Vertriebszentrum der Telegärtner Gruppe.

Entwicklung & Fertigung von Koax, Kupfer – und Industrial-Ethernetkomponenten

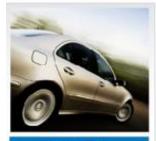
Telegärtner Gerätebau Höckendorf

Entwicklung und Fertigung von <u>LWL - Produkten und LWL- Kabelkonfektionierung</u>


Telegärtner Kunststofftechnik Steinenbronn

Kunststofflösungen für Pharmaindustrie, Automotive, Elektroindustrie

Wir verbinden die Welt:
Ob Tokio, Chicago, Paris oder Steinenbronn
– wir sind dort, wo Sie uns brauchen.

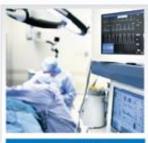

Mit unseren Tochterunternehmen und 58 Distributoren sind wir in über 70 Ländern weltweit vertreten.

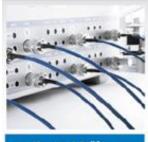
Ein Familienunternehmen in der dritten Generation!

MÄRKTE

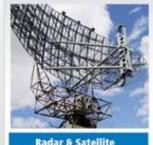
Automotive

Broadcast


Erneuerbare Enerigen


Glasfaserverkabelung

Industrie & Outdoor


Medizintechnik

Messen & Prüfen

Telekommunikation

Radar & Satellite

Rechenzentren

Strukturierte Verkabelung

Transportwesen

WAS BRAUCHEN WIR?

ZUVERLÄSSIGE DATENAUTOBAHNEN

IHR REFERENT

FALK KLAUS KRÜGER

Elektroinstallateur, Dipl.-Ing. (FH) Elektrotechnik

Telegärtner Karl Gärtner GmbH Systemberater Data Voice Deutschland

Mitarbeit im DIN Ausschuss Elektrotechnik / Bauwesen GAEB AK LB 061 und AK LB 062 VdS Sachkundiger für Gebäude-Infrastruktur-Verkabelung Lehrauftrag Hochschule Meißen (FH)

falk.krueger@telegaertner.com +49 160 9077 2774

cate

Anerkennung

als

Sachkundiger für Gebäude-Infrastruktur-Verkabelung (GIV-Sachkundiger)

21.09.2023

20.09.2027

Inhaber der Anerkennun

GIV 15016

Geltungsbereich:

Falk Krüger Wiesenweg 9 DE-01968 Kleinkoschen Die Anerkennung umfasst die im Geltungsbereich genannten Tatigkeiten.

Die Anerkennung erlischt, wenn die Voraussetzungen zur Anerkennung nicht mehr gegeben sind.

Das Zertifikat darf nur unverändert vervielfaltigt werden.

> Alle Anderungen der Voraussetzungen für die Anerkennung sind der VdS-Zertifizierungsstelle - mitsamt den erforderlichen Unterlagen – univerzüglich zu übermitteln.

Planung, Errichtung und Prüfung von Kommunikationskabelanlagen

Eine Werbung mit der V dS-Anerkannung als Sachkundiger für Gebäudeinfrastruktur-Verkabelung (GM-Sachkundiger) muss den Inhalt des Zertifikates korrekt wiedergeben und darf nicht auf wettbewerbsrechtswidrige Art und Weise erfolgen.

Anerkennungsgrundlage

Richtlinien für die Anerkennung von Sachkundigen für Planung, Errichtung und Prüfung von Kommunikationskabelanlagen (GIV-Sachkundige) VdS 3117:2020-09

VdS Schadenverhötung GmbH

Zertifizierungsstelle Amsterdamer Str. 174 D-50735 Köln

Ein Un ternehmen des Gesamtverband as der Deutschen Versicherungswirtschaft e.V. (GDV)

Köln, den 14.10.2024

Dr. Reinermann i.V. Fritz-Lafrenz

Dr. Reinermann i.V. Fr
Geschaftsführer Leiter de

Leiter der Zertifizierungsstelle

Rektor

Lehrauftrag

Herrn Falk Krüger

wird im Studienjahr 2023/2024

an der

Hochschule Meißen (FH) und Fortbildungszentrum

für das Modul

BaDV-28 "IT-Infrastrukturmanagement"

ein Lehrauftrag erteilt.

Meißen, den 9. April 2024

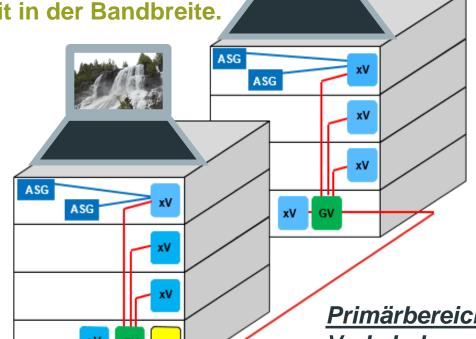
Prof. Dr. Frank Nolden

die strukturierte Verkabelung allgemein

DIE STRUKTURIERTE VERKABELUNG

Ziel:

- Verbindung von zwei Rechnern und Funktionssicherheit in der Bandbreite.


<u>Tertiärbereich</u> = Etagenverkabelung

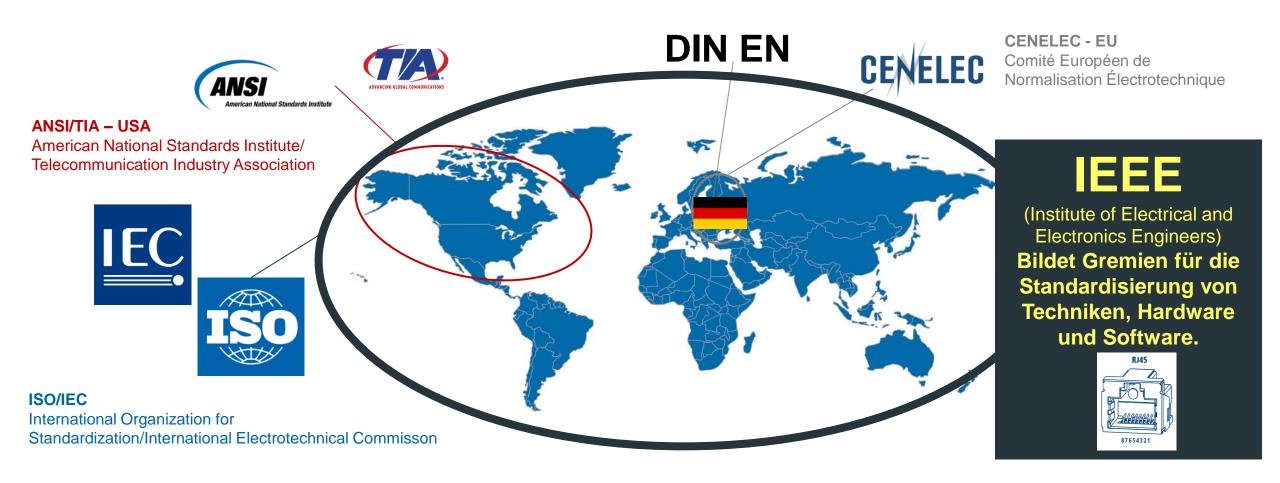
xV = Standort-spezifisches TeilsystemASG = AnwendungsspezifischeÜbertragungseinrichtung

<u>Sekundärbereich</u> = Gebäude Backbone = Steigbereich = Vertikal-Verkabelung

GV = Gebäudeverteiler

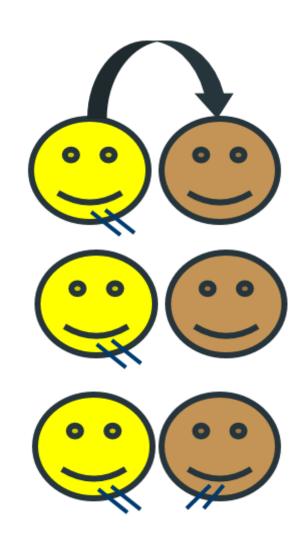
xV = Standort-spezifisches Teilsystem

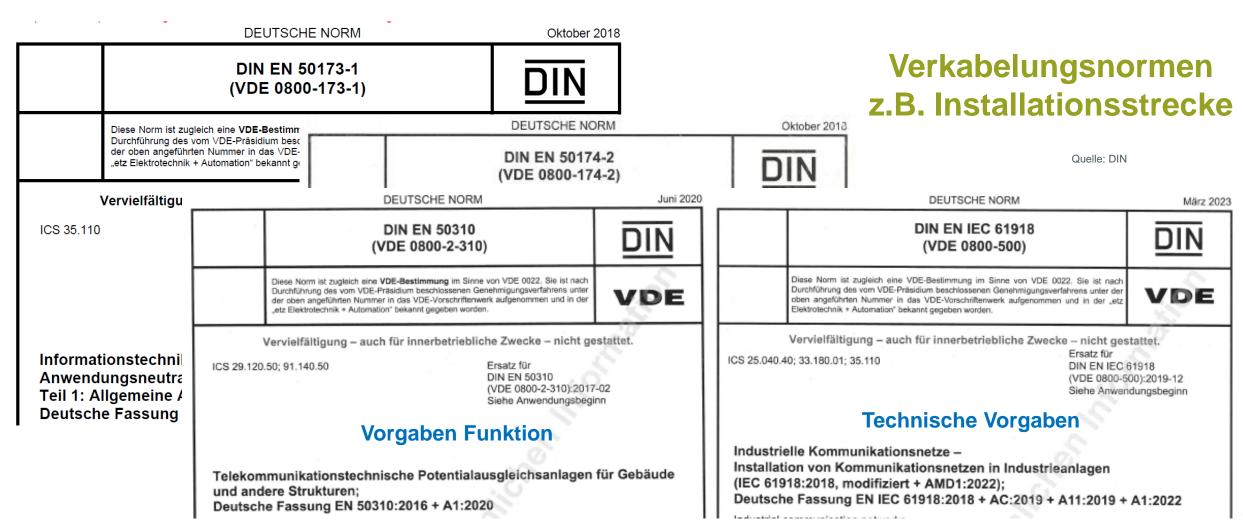
Quelle: DIN EN 50173-1 (VDE 0800173-1):2018-10


<u>Primärbereich</u> = Campus Backbone Verkabelung zwischen den Gebäuden

SV = Standortverteiler

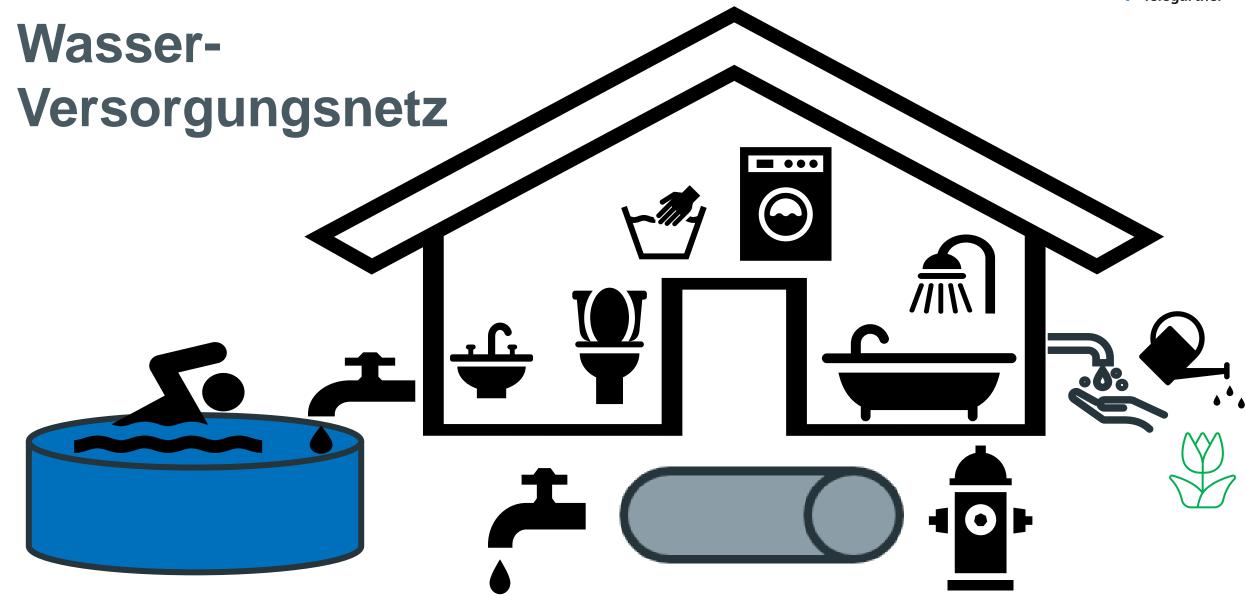
GV = Gebäudeverteiler


Normen sind keine Gesetze, sondern lediglich definierte Mindestanforderungen um Produkte oder Prozesse kompatibel zu machen. *Im Vertrag aber rechtlich bindend.*

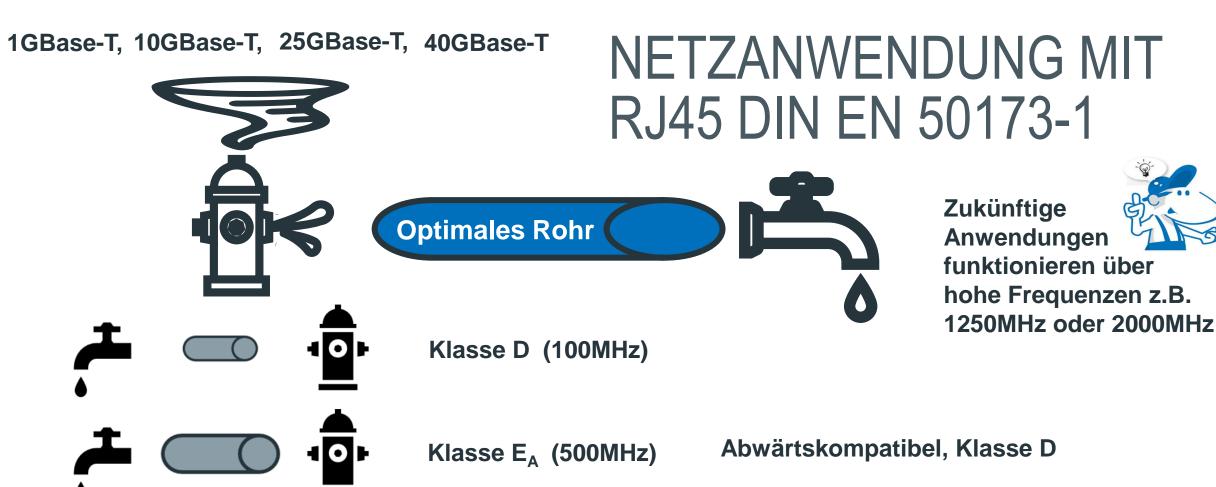

Arten der Kommunikation

- Simplex z.B. Hörfunk/Fernsehen (nur in einer Richtung)
- Halbduplex z.B. Sprechfunk (in zwei Richtungen wechselseitig)
- Vollduplex z.B. Telefon (in zwei Richtungen gleichzeitig)

INFORMATIONEN STRUKTURIERTE VERKABELUNG



Grundlagen, Herleitungen, Sichtweisen

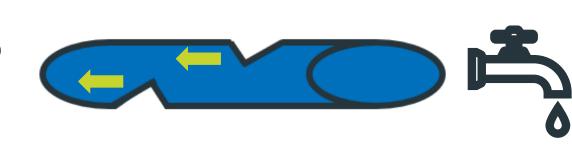


Abwärtskompatibel, Klasse E_A und Klasse D

KUPFER VERKABELUNG MIT RJ45

Klasse I (2000MHz)

Symmetrie z.B. RL als Garantie für Vollduplex



1GBase-T, 10GBase-T, 25GBase-T, 40GBase-T

Reflexionen sind Störungen

im Datennetz z.B. Rückflussdämpfung (RL)

Klasse D (100MHz)

Klasse E_A (500MHz)

Klasse I (2000MHz)

Die Rückflussdämpfung der Klasse E_A ist <u>ca.40%</u> besser wie die der Klasse D bei 100MHz

Die Rückflussdämpfung der Klasse I ist <u>ca.80%</u> besser wie die der Klasse E_Δ bei 500MHz

ETHERNET-SIGNAL MIT TWISTED-PAIR-KABEL

Halbduplex

Benötigt zwei Adern Paare des Datenkabels.

Ein Paar sendet und ein Paar empfängt Daten.

Manchestercodierung

logische Zustände (0 und 1)

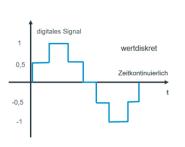
MLT-3

logische Zustände (-1V, 0V, +1V)

Vollduplex

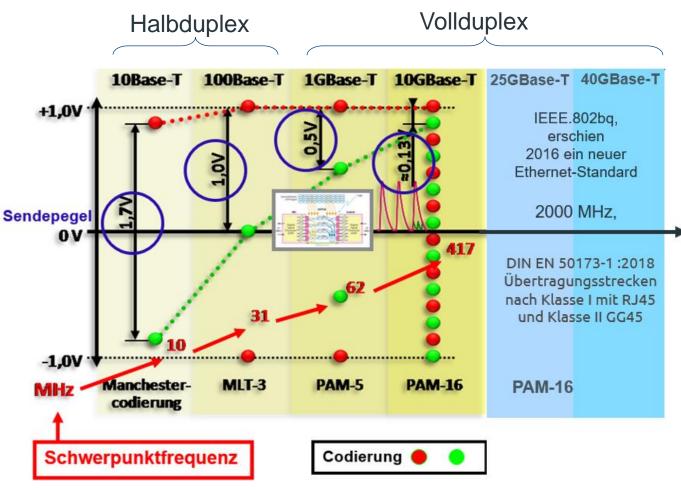
Benötigt vier Adern Paare des Datenkabels.

Alle Paare senden und empfangen zeitgleich.


PAM 5 (Pulsamplitudenmodulation)

5 logische Zustände

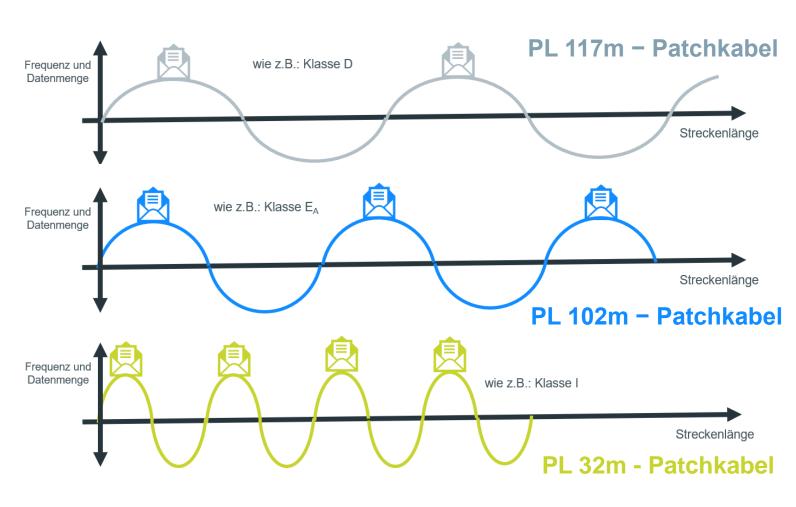
(-1V, -0.5V, 0V, +0.5V, +1V)


PAM 16

16 logische Zustände

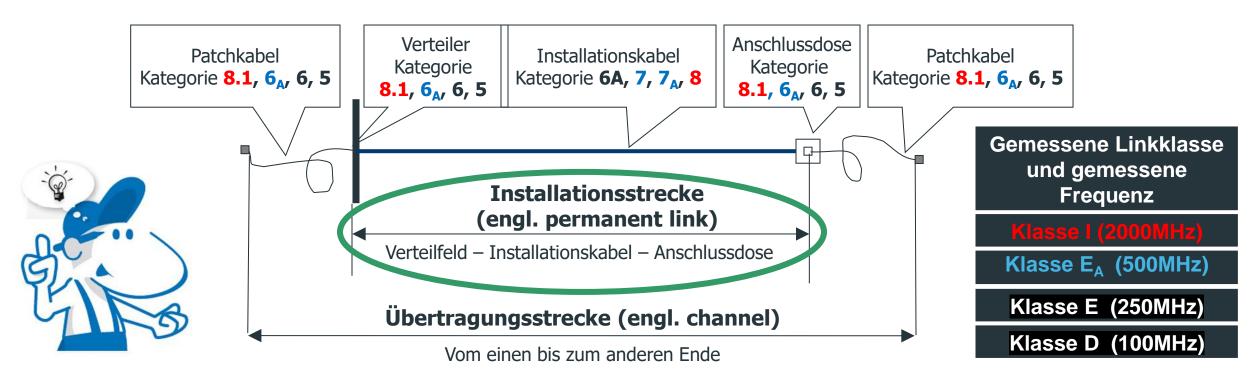
0 0 1 0 0 1 1 0 1 1

2-Pege


Wie kann man sich das vorstellen, Frequenz, Wellenlänge, Übertragungsstrecke/Linkklasse

Die Wellenlänge wird mit zunehmender Frequenz kürzer.

z.B.: 100MHz


z.B.: 500MHz

z.B.: 2000MHz

TERTIÄRVERKABLUNG UND MESSUNGEN

Einzelne Produkte der Kategorie...werden immer nach Linkklasse...gemessen.

NETZANWENDUNG / LINK-KLASSE / STRECKEN-LÄNGE

Die Netzanwendung der **aktiven Komponenten Ethernet IEEE-Norm 802.3..** und die dazugehörige Linkklasse oder Anwendungsbericht.

10 Base-T halbduplex	Klasse C
100 Base-T halbduplex	Klasse D
1 GBase-T vollduplex	Klasse D
2,5-10 GBase-T vollduplex	Klasse E _A
25 GBase-T, TR, vollduplex	Class I
25-40 GBase-T vollduplex	Klasse I

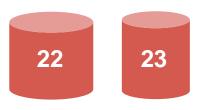
Temperaturerhöhung führt zur Vergrößerung der Dämpfung und damit zur Verkürzung der Übertragungsstrecke

Die Linkklasse und die **Länge/Ausdehnung** ist immer von der Frequenz abhängig die genutzt wird.

Klasse C, 16MHz	188m - Patchkabel
Klasse D, 100MHz	PL 117m - Patchkabel
Klasse D, 100MHz	PL 117m - Patchkabel
Klasse E _A , 500MHz	PL 102m - Patchkabel
Class I, 1250MHz	CH ca.32m incl. Patchkabel
Klasse I, 2000MHz	PL 32m - Patchkabel

- Die gemessene Übertragungsstrecke (engl. channel) ist incl. Patchkabel.
- Diese müssen immer nach der Messung gesteckt bleiben.
- Wenn man sie entfernt und neue Patchkabel verwendet muss immer neu gemessen werden.
- Diese erneute Messung wird zum Nachweisen der Funktion benötigt.
- In der Praxis meist nicht anwendbar.

die Komponente Kabel



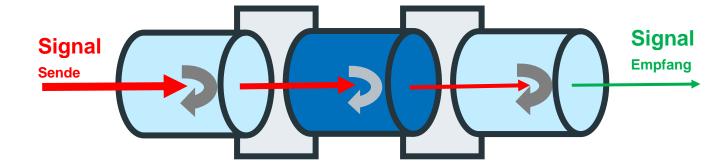
TWISTED-PAIR-KABEL DIN EN 50173-1

- Das Kabel der Kategorie 7, 7 und 8.2 ist ein S/FTP
- S = Gemeinsamer Geflechtschirm
- FTP = einzelne Paare jeweils von einem Folienschirm umgeben
- Es gibt Leitungen in massiver, eindrähtiger Ausführung. (Installationskabel)
- Es gibt Leitungen in flexibler, mehrdrähtiger Ausführung. (Rangierschnüre)

AWG/1	Durchmesser mm (ca.)	Querschnitt mm² (ca.)
22 (solid)	0,64	0,33
23 (solid)	0,57	0,26
27 (solid)	0,36	0,10

Qualität:

- Wellenwiderstandsverlauf
- Rückflussdämpfung (RL)



BEWERTUNG ÜBERTRAGUNGS-STRECKE

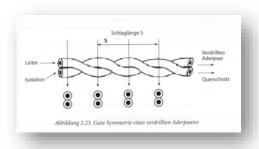
Rückflussdämpfung

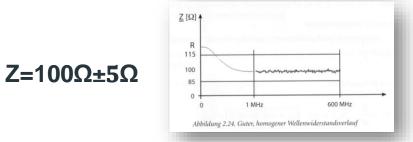
 Ist ein Maß für Reflexionen auf Datenstrecken und damit ein Maß für die Übertragungsqualität.

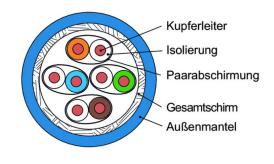
Übertragungsstrecke

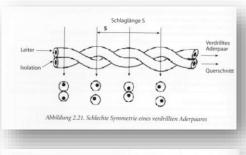
Z = Wellenwiderstand Datenkabel

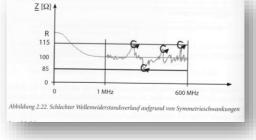
 $Z_{Kabel} = 100\Omega \pm 5\Omega$


 $\mathbf{Z_1} = 105\Omega$


 $Z_2 = 95\Omega$


RL(dB)=
$$20log_{10} \frac{|z_1 - z_2|}{|z_1 + z_2|}$$


WELLENWIDERSTANDSVERLAUF UND RL

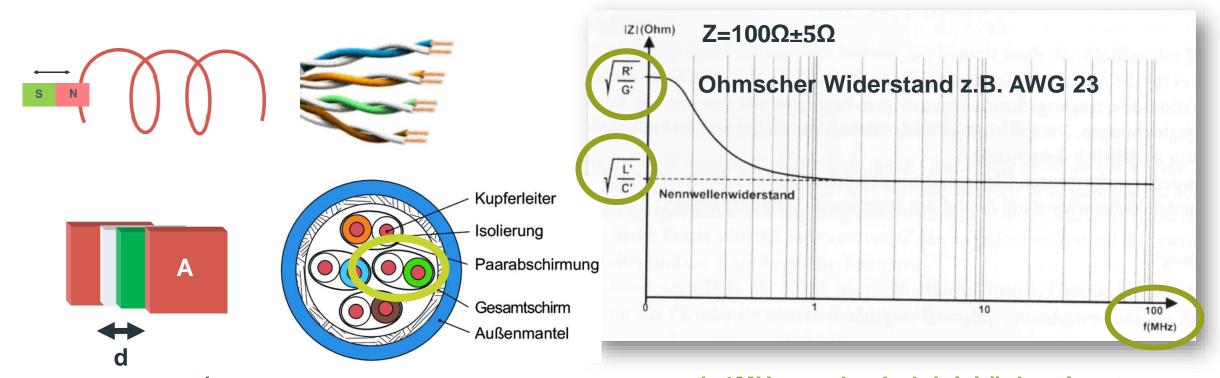


Quelle: Fachbuch IT-Verkabelungssysteme Kiery, Köhler, Wilhelm

 $Z=100\Omega\pm15\Omega$

Gute Symmetrie

- RL großer Wert in dB


Schlechte Symmetrie

- RL kleiner Wert in dB

WELLENWIDERSTANDSVERLAUF UND FREQUENZ

Quelle: Fachbuch IT-Verkabelungssysteme Kiery, Köhler, Wilhelm

C (Kapazität) = $\varepsilon \frac{A}{d}$

ε = dielektrische Leitfähigkeit (Eigenschaft vom Kunststoff)

ab 1MHz von L = Induktivität bestimmt und von C = Kapazität bestimmt

DATENBLATT UND RL- ANGABE

Frequenz	1*	4	10	16	31,2	62,5	100	250	500	600	1000*	1200*	1300*	MHz
Dämpfung	1,9	3,5	5,6	7,1	10,0	14,1	18,0	28,9	41,3	46,€	60,2	66,6	69,6	dB/100m
NEXT	110	105	104	103	102	101	100	98	96	94	92	90	88	dB/100m
PS NEXT	108	103	102	101	100	99	98	96	94	92	90	88	86	dB/100m
ACR	108	101	98	96	92	87	82	69	54	48	32	23	18	dB/100m
PS ACR	106	99	96	94	90	85	80	67	52	46	30	21	16	dB/100m
ACR-F	95	94	93	91	90	89	88	80	65	60	40	38	37	dB/100m
DC ACD F	02	02	01	90	00	07	96	70	62	E0	30	36	35	dB/100m
Return Loss	30	30	32	32	32	33	32	29	25	24	21	19	18	dB/100m

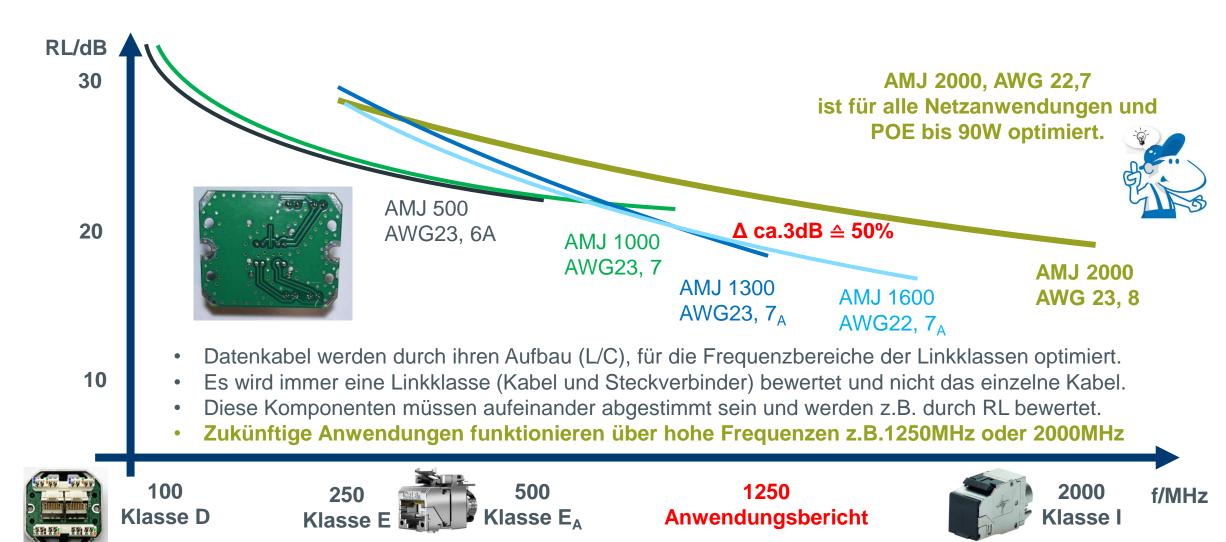
Frequenz	1*	4	10	100	250	500	600	1000	1600	2000	MHz
Dämpfung	0,54	0,95	1,5	5,0	8,0	11,3	12,5	16,3	21,0	23,5	dB/30m
NEXT	103	103	103	103	97	95	94	90	85	80	dB/30m
PS NEXT	100	100	100	100	94	92	91	77	82	77	dB/30m
ACR	102	102	101	98	89	84	80	74	64	56	dB/30m
PS ACR	99	99	99	95	86	81	77	71	61	53	dB/30m
ACR-F	100	100	100	95	92	89	87	78	72	70	dB/30m
DC VCD E	07	07	07	Ω1	QΩ	86	QΛ	75	69	67	dB/30m
Return Loss	28	30	30	30	28	26	25	23	20	18	dB/30m

Zukünftige Anwendung und Verkabelung mit RJ45:

- > ISO/IEC TR 11801-9905:2018 für 25GBASE-T (1250MHz)
- Verkabelung Klasse I (2018) für 25/40 GBASE-T (2000MHz)

 $Z = 100\Omega \pm 15\Omega$, AMJ 1300 S/FTP AWG23/1 Cat.7_A

Verkabelung der Klasse F_A 1000MHz

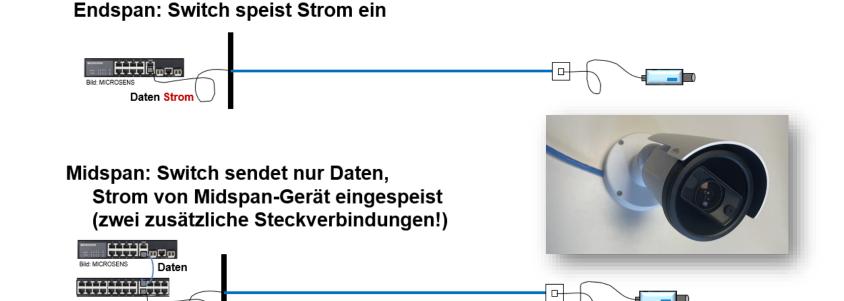

 $Z = 100\Omega \pm 5\Omega$, AMJ 2000 S/FTP AWG23/1 Cat.8.2

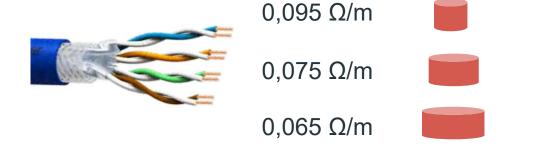
Klasse F_A und Klasse I (2000MHz)

- > +2 dB Rückflussdämpfung
- ca.40% weniger Störungen

DATENKABEL IM VERGLEICH ZUR LINKKLASSE

Investition in die Zukunft nach Verkabelungsnorm DIN EN 50173





FUNKTION POE

PoE	Norm	Eingespeiste Leistung typ.	DIN EN 50173-1:2018-10
PoE	IEEE 802.3af	15,4 W	Typ 1, 4-15 W, 2 Paare
PoE+	IEEE 802.3at	30,0 W	Typ 2, 4-30 W, 2 Paare
4PPoE	IEEE 802.3bt	60,0 W 90,0 W	Typ 3, 4-60 W, 4 Paare Typ 4, 4-90 W, 4 Paare

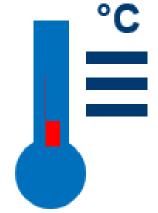
Drahtwiderstand nach DIN EN 50174-2:2018-10

Daten Strom

PARAMETER BEI DER INSTALLATION

In der DIN EN 50173-1:2018-10 sind die Netzanwendungen für PoE Typ 1-4 und die Kabelbewertung beschrieben

- PoE Typ 1 = 4-15 W, 2 Paare, Klasse D
- PoE Typ 2 = 4-30 W, 2 Paare, Klasse D
- PoE Typ 3 = 4-60 W, 4 Paare, Klasse D
- PoE Typ 4 = 4-90 W, 4 Paare, Klasse D


Anforderung für Planung

In der DIN EN 50174-2:2018-10 wird der Drahtwiderstand im Verhältnis mit dem Kabeldurchmesser für PoE Anwendungen definiert.

0.095 Ω/m / Ø Kabel 5mm

0,075 Ω/m / Ø Kabel 7mm

0,065 Ω/m / Ø Kabel 7mm Anforderung für Planung

AWG	Ω/m						
22	0,055						
22,7 (≈ 23)	0,063 AMJ2000						
23	0,068						
24	0.086						
26	0.143						
27	0.172						

Quelle: DIN EN 50174-2 und 50173-1 2018:10

BERECHNUNGSBEISPIELE ΔT°C NACH KABELANZAHL/LÄNGE DIN EN 50174-2 2018:10

Kleinster Widerstand 0,065 Ω/m Größter Kabeldurchmesser 0,007 m DIN EN 50174-2:2018-10	6 Kabel	12 Kabel	24 Kabel
Installationsbedingung - mit Belüftung	ΔT = 1,5°C	ΔT = 2,5°C	ΔT = 4,0°C
Installationsbedingung - Kabelrinne mit ungelochtem Boden	ΔT = 2,0°C	$\Delta T = 3.0$ °C	ΔT = 4,5°C
Installationsbedingung – Elektroinstallationskanal / Elektroinstallationsrohr	ΔT = 2,8°C	ΔT = 4,0°C	ΔT = 6,0°C
Installationsbedingung – mit Isolierung	ΔT = 6,0°C	ΔT = 8,5	ΔT = 12,5°C

Temperatur (°C)	Länge der Übertragungsstrecke (m) (<u>Gesamtlänge der Schnüre 10m</u>)
20°C	100 m
25°C	98 m
30°C	97 m
35°C	95 m
40°C	93 m
45°C	90 m
50°C	86 m
55°C	83 m
60°C	80 m

Quelle: DIN EN 50174-2 2018:10

BERECHNUNGSBEISPIELE ΔT°C NACH KABELANZAHL/LÄNGE DIN EN 50174-2 2018:10

Temperatur (°C)	Länge der Übertragungsstrecke (m) (<u>Gesamtlänge der Schnüre 10m</u>)	Länge der Übertragungsstrecke (m) (<u>Gesamtlänge der Schnüre 15m</u>)	Länge der Übertragungsstrecke (m) (<u>Gesamtlänge der Schnüre 20m</u>)
20°C	100 m	98 m	95 m
25°C	98 m	96 m	93 m
30°C	97 m	94 m	91 m
35°C	95 m	92 m	89 m
40°C	93 m	90 m	87 m
45°C	90 m	87 m	85 m
50°C	86 m	84 m	82 m
55°C	83 m	81 m	79 m
60°C	80 m	78 m	76 m

Quelle: DIN EN 50174-2 2018:10

BERECHNUNGSBEISPIELE FÜR KABELWERTE ΔT°C NACH DIN EN 50174-2 2018:10

Widerstand und Kabeldurchmesser im Vergleich zu den Vorgaben DIN EN 50174-2:2018-10	6 Kabel	12 Kabel	24 Kabel	48 Kabel	72 Kabel	96 Kabel	144 Kabel	216 Kabel
0,095 Ω/m und 0,005m Installationsbedingung – Elektroinstallationskanal / Elektroinstallationsrohr	ΔT = 6,0°C	ΔT = 9,0°C	ΔT = 13,0°C	ΔT = 19,5°C	ΔT = 25,0°C	ΔT = 29,5°C	ΔT = 38°C	******
0,075 Ω/m und 0,007m Installationsbedingung – Elektroinstallationskanal / Elektroinstallationsrohr	ΔT = 3,5°C	ΔT = 5,0°C	ΔT = 7,5°C	ΔT = 12,0°C	ΔT = 15,0°C	ΔT = 18,5°C	ΔT = 24°C	ΔT = 32°C
0,065 Ω/m und 0,007m Installationsbedingung – Elektroinstallationskanal / Elektroinstallationsrohr	ΔT = 2,8°C	ΔT = 4,0°C	ΔT = 6,0°C	ΔT = 9,5°C	ΔT = 12,5°C	ΔT = 15,0°C	ΔT = 19,5°C	ΔT = 26°C

Quelle: DIN EN 50174-2 2018:10

KABELWERTE ΔT°C, DIN EN 50174-2 2018:10

Quelle: DIN EN 50174-2 2018:10

Widerstand und Kabeldurchmesser im Vergleich zu den Vorgaben DIN EN 50174-2:2018-10	6 Kabel	12 Kabel	24 Kabel	48 Kabel	72 Kabel
<u>0,075 Ω/m</u> und Ø 0,007m Elektroinstallationskanal / Elektroinstallationsrohr	ΔT = 3,5°C	$\Delta T = 5.0^{\circ}C$	ΔT = 7,5°C	ΔT = 12,0°C	ΔT = 15,0°C
0,065 Ω/m und Ø 0,007m Elektroinstallationskanal / Elektroinstallationsrohr	ΔT = 2,8°C	$\Delta T = 4.0^{\circ}C$	$\Delta T = 6.0^{\circ}C$	ΔT = 9,5°C	ΔT = 12,5°C
0,01 Ω/m Unterschied zwischen den Widerständen	ΔT = 0,7°C	ΔT = 1,0°C	ΔT = 1,5°C	ΔT = 2,5°C	ΔT = 2,5°C

Wir bewerten AMJ 1600 MHz, Cat.7_A, AWG 22, R = 0,055 Ω /m und AMJ 2000 MHz, AWG 23, R = 0,063 Ω /m für alle Anwendungen.

≈ 0,01 Ω/m Unterschied **2,5°C ≙ 1** Meter

Wir bewerten AMJ 1300 MHz, Cat.7_A, AWG 23, R =0,067 Ω /m und AMJ 2000 MHz, AWG 23, R = 0,063 Ω /m für alle Anwendungen.

 $0,004~\Omega/m$ Unterschied

1°C ≙ 0,4 Meter

PLATZBEDARF BEI NEUINSTALLATION

Quelle: DIN EN 50174-2 2018:10

Gesamter Platzbedarf für Kabel (mm²)	Kabeldurchmesser 7 mm	Kabeldurchmesser 8 mm	Kabeldurchmesser 9 mm	
	AMJ 1300 AMJ 1000	AMJ 2000 AMJ 1400	AMJ 1600	
6 Kabel	2,94 cm ²	3,84 cm ²	4,86 cm ²	
12 Kabel	5,88 cm ²	7,68 cm ²	9,72 cm ²	
24 Kabel	11,76 cm ²	15,36 cm ²	19,44 cm²	
48 Kabel	23,52 cm ²	30,72 cm ²	38,88 cm ²	
72 Kabel	35,28 cm ²	46,08 cm ²	58,32 cm ²	
96 Kabel	47,04 cm ²	61,44 cm ²	77,76 cm ²	

Hinweis: DIN EN 50174-2:2018-10

In der Anfangsphase der Planung:

- sollen Kabelwegsysteme als voll belegt angesehen werden, wenn die Querschnittsfläche der Kabel <u>40% der Querschnittsfläche des Kabelwegsystems</u> beträgt, so dass noch ausreichend Platz für spätere Verkabelung zur Verfügung steht.
- Bei der <u>weiteren Planung</u> sollen <u>offene oder zu öffnende Kabelwegsysteme</u> als <u>voll belegt</u> angesehen werden, wenn die Querschnittsfläche der Kabel <u>50% der Querschnittsfläche des Kabelwegsystems</u> beträgt.

DIN EN 50173-6 FUNKNETZ ODER WI-FI??

Unterstützte Funknetzanwendungen

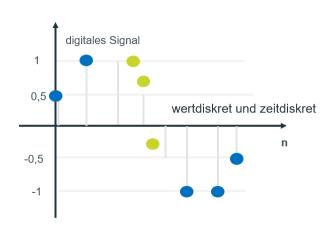
Quelle DIN EN 50173-6: 2018-10

Anwendung	Beschreibung des Standards	Typische Reichweite in Innenräumen (Radius)
IEEE 802.11a	Lokale Funknetze (54 Mbit/s bei 5 GHz)	12 m
IEEE 802.11b	Lokale Funknetze (11 Mbit/s bei 2,4 GHz)	30 m
IEEE 802.11g	Lokale Funknetze (54 Mbit/s bei 2,4 GHz)	12 m
IEEE 802.11n	Lokale Funknetze (600 Mbit/s bei 2,4 und/oder 5 GHz)	12 m
IEEE 802.11ac	Lokale Funknetze (7 Gbit/s bei 5 GHz)	12 m

WLAN ist ein Funknetzwerk auf Basis des Standards IEEE 802.11...

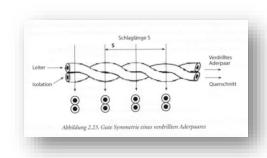
Wi-Fi ist ein Kunstbegriff und eine Handelsmarke. Hier werden verschiedene Hersteller zertifiziert durch die Wi-Fi Alliance.

WI-FI STANDARD

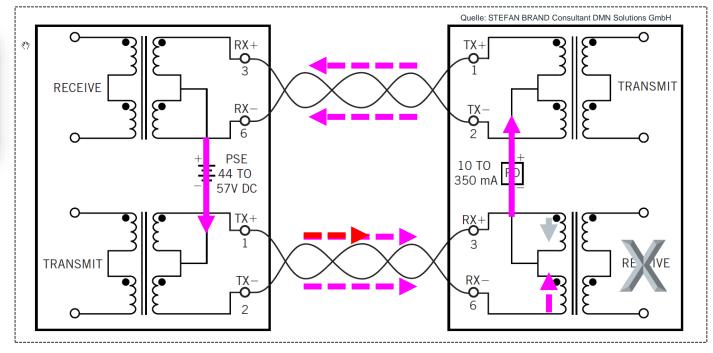

	→ Wi-Fi 5	⇒ Wi-Fi 6	⇒ Wi-Fi 6E	❤ Wi-Fi 7
Standard Hinweis: 1 Byte = 8 Bit	IEEE 802.11ac	IEEE802.11ax	IEEE802.11ax	IEEE802.be (in Ausarbeitung)
Sendefrequenz	nur 5 GHz	2,4 GHz, 5 GHz	2,4 GHz, 5 GHz, 6GHz	2,4 GHz, 5 GHz, 6 GHz
Maximale Anzahl der Datenströme/Kanäle	8	8	8	16
Maximale Datenrate pro Datenstrom/Kanal	866 <u>Mb</u> /s	1,2 Gb/s	1,2 Gb/s	2,9 Gb/s
Maximale theoretische Datenrate	6,93 Gb/s	9,61 Gb/s	9,61 Gb/s	46,1 Gb/s
Typische Geschwindigkeit	1,3 Gb/s	5 Gb/s	5 Gb/s	18 Gb/s (in Vorbereitung)

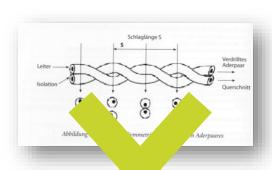
Seit 2024 wird an dem neuen WLAN-Standard IEEE 802.11bn, auch bekannt als **Wi-Fi 8**, gearbeitet. Ab 2029 können wir mit maximal acht Antennen einem Summendurchsatz von etwa **23 GBit/s** erreichen.

POE- ERFORDERNISSE, WIDERSTANDS SYMMETRIE, FÜR DIE GARANTIE DER FUNKTION


• Die Bereitstellung von PoE über eine Klasse E_A , Klasse I Verkabelung mit Kategorie $6A/7/7_A/8$ Datenkabel erfordert einen niedrigen Gleichstromwiderstand der Verkabelung z.B. **0,065** Ω/m (DIN 50174-2).

- Die Kabelgeometrie (**Wellenwiderstand/Rückflussdämpfung**) muss den Gleichstromwiderstand ausgleichen.
- Wenn ein Paar zu sehr aus dem Gleichgewicht ist, sättigt die Leistung, die Transformatoren des Empfängers (Wireless Access Point, Router) und stört die Datenübertragung.
- Die Störung der Datenübertragung wird durch Verformung, der Wellenform, des Ethernet Signals hervorgerufen.
- Diese Verformung des Signals führt zu Bitübertragungsfehler.
- Neue zusätzliche Messparameter seit 2018 nach ISO/IEC/DIN definiert.
- DC-Widerstand-Unsymmetrie (+POE) Unsymmetriedämpfung (TCL/ELTCTL)




POE BEI FUNKNETZEN BENÖTIGT SYMMETRIE

Gute Symmetrie

- Wenig Reflexionen
- Wenig Störungen
- RL großer Wert in dB

Schle Sym vie

- Vie. Reflexion
- Viel Störungen
- RL kleiner Wert in dB

Klasse I RL 100% besser wie Klasse D und ca. 80% besser wie Klasse E_A , bei Ethernet-Signals vollduplex **Abwärtskompatibel für alle Längen und Linkklassen, beste Qualität nach ISO, EN, DIN**

TELEGÄRTNER SYSTEMKABEL

Telegärtner-Systemkabel sind wichtiger Bestandteil des Verkabelungssystems.

- Erfüllen oder übertreffen geltende Normen und Standards.
- Sind exakt auf die anderen Systemkomponenten abgestimmt.
- Bieten anerkannt hohe Performance und Zuverlässigkeit in der Übertragungsstrecke.
- Sind für die jeweilige Anwendung optimiert.
- Sind mit einer 25-jährigen Systemgarantie ausgestattet.

25-jährigen Systemgarantie

<u>Garantie</u> Urkunde für Zukunftssichere Klasse I (2000MHz und 40GBase-T), Klasse E_A (500 MHz und 10GBase-T)

- Projekt
- Installateur
- Planer
- > Produkte

Garantie Erklärung

- Gegenstand des Garantieangebotes
- Angebotsempfänger
- Dauer des Garantieangebotes
- Voraussetzungen des Garantieangebotes
- Gewährleistungsansprüche

die Komponente Dose, Patchfeld, Modul und Stecker

NETZANWENDUNG MIT TWISTED-PAIR-KABEL /RJ45 DIN EN 50173-1 (VDE 0800-173-1):2018-10

Netzanwendung für aktive Komponenten	Kategorie der Komponente Dose Patchfeld Modul	Gemessene Linkklasse und gemessene Frequenz
40GBase-T	8.1	Klasse I (2000 MHz)
25GBase-T	8.1	Klasse I (2000MHz)
10GBase-T, 5GBase-T, 2,5GBase-T	6 _A	Klasse E _A (500MHz)
	6	Klasse E (250MHz)
1000Base-T 100Base-TX	5	Klasse D (100MHz)

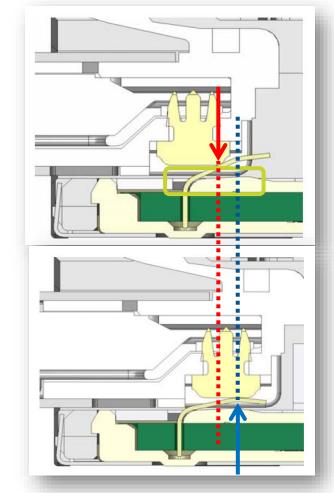
FORDERN SIE TECHNISCHE EIGENSCHAFTEN

Anforderung an die Verbindungstechnik, für die Anwendungsneutrale Kommunikationskabelanlage werden in DIN EN 50173-1 beschrieben.

- Anschlussmöglichkeiten, um Verkabelung und aktive Geräte zu überwachen und zu prüfen (Dokumentation)
- Steckbare Potentialanschlussmöglichkeit

- Schutz vor Beschädigung und Verschmutzung
 - Optimiertes Kontaktdesign zur Vermeidung von Abreißfunken im Kontaktruhebereich (PoE Typ 4, 90W)

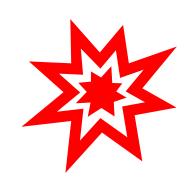
- Durch Überbiegeschutz, Kompatibilität: zu RJ45-/12-/11-Steckern
- Kabelschirme dürfen nicht als Zugentlastung genutzt werden wie in DIN EN 50174-2 :2018-10 beschrieben

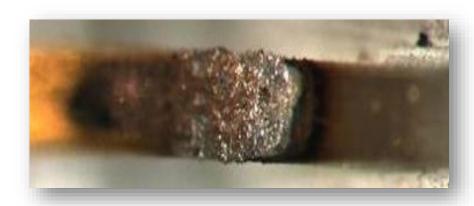

FORDERN SIE TECHNISCHE EIGENSCHAFTEN

Durch Überbiegeschutz, Kompatibilität: zu RJ45-

RJ45 und 12-/11-Steckern

Anwendung: PoE, PoE+ und 4PPoE


Berührungsstelle Abreißfunken


Berührungsstelle Datenübertragung

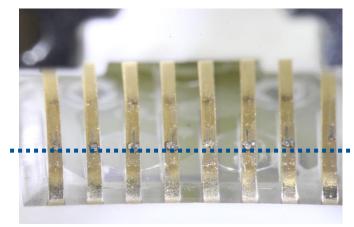
FUNKTION POE

Wo ist der Brandpunkt im Steckverbinder?

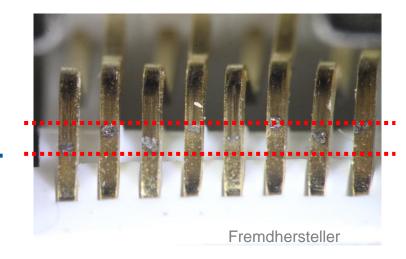
PoE	Norm	Erschei- nungsjahr	Eingespeiste Leistung typ.	Leistung am Endgerät typ.	Stromstärke pro Aderpaar typ. bis zu	DIN EN 50173-1:2018-10
PoE	IEEE 802.3af	2003	15,4 W	13,0 W (ursprünglich 12,95 W)	350 mA	Typ 1, 4-15 W, 2 Paare
PoE+	IEEE 802.3at	2009	30,0 W	25,5 W	600 mA	Typ 2, 4-30 W, 2 Paare
4PPoE	IEEE 802.3bt	2019	60,0 W 90,0 W	51,0 W 71,3 W	600 mA 960 mA	Typ 3, 4-60 W, 4 Paare Typ 4, 4-90 W, 4 Paare

FORDERN SIE TECHNISCHE EIGENSCHAFTEN

Durch Überbiegeschutz entwickelten wir optimale Kontaktform im RJ45.


Eine Übertragungsstrecke von **90 Metern**, kann zusätzlich um etwa 40 dB gedämpft werden. Wir planen immer mit <u>Vollduplex senden und empfangen</u> <u>über alle vier Paare.</u>

Was bedeutet das für die Ethernet-Signale?


- > 1GBase-T
- ➤ **U**_{Sendepegel} 0,5V, **U**_{Empfangspegel} ca. 0,005V (PAM-5 Ethernet Signal)
- 10GBase-T
- ➤ **U**_{Sendepegel} 0,13V, **U**_{Empfangspegel} ca. 0,001V (PAM-16 Ethernet Signal)

Optimiertes Kontaktdesign zur Vermeidung von Abreißfunken im Kontaktruhebereich (PoE Typ 4, 90W)

- Kontaktfeder Bronze, vergoldet
- Wenn Gold abgenutzt ist, die Kontaktfläche dann Bronze wird verringert sich die Leitfähigkeit um das 5 fache.
- Bei einer Verrußung und Aufschäumung um ein vielfaches mehr.

Telegärtner

NETZANWENDUNG MIT TWISTED-PAIR-KABEL

/RJ45 DIN EN 50173-1

Netzanwendung für aktive Komponenten	Kategorie der Komponente	Dose (MHz)
10GBase-T, 5GBase-T, 2,5GBase-T	6 _A	Modul AMJ-K, AMJ-S, AMJ-SL, AMJ-SL 25G (500)

Nicht Design fähig

Design fähig

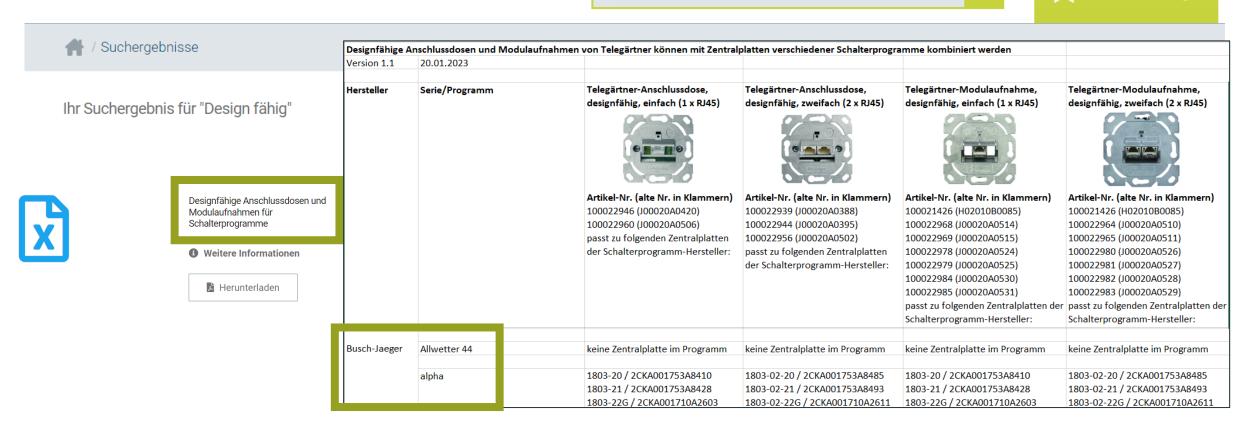
Verwendung der Dose:

- Brüstungskanal
- Bodentankeinbau
- Unter Putz
- Auf Putz

Anwendbare Kabel:

- AMJ 2000,
- AMJ 1600, AMJ 1400, AMJ 1300
- AMJ 1000

Telegärtner Gruppe

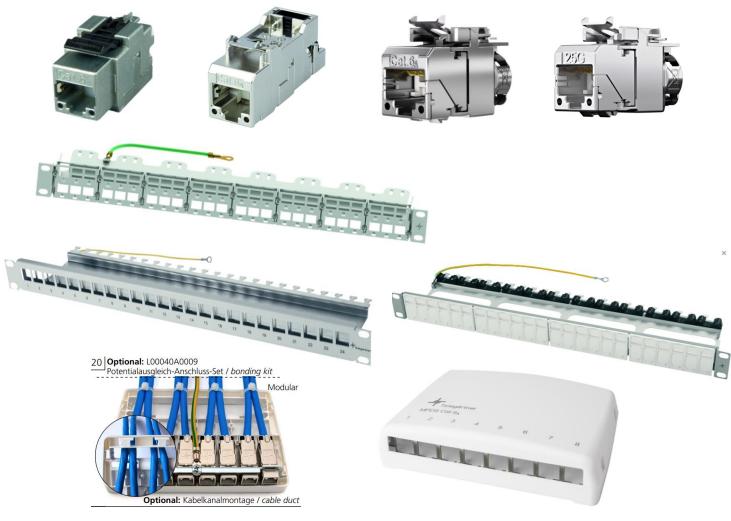

Produkte Konfiguratoren Media Center Kontakt Jobs

Suche...

Design fähig

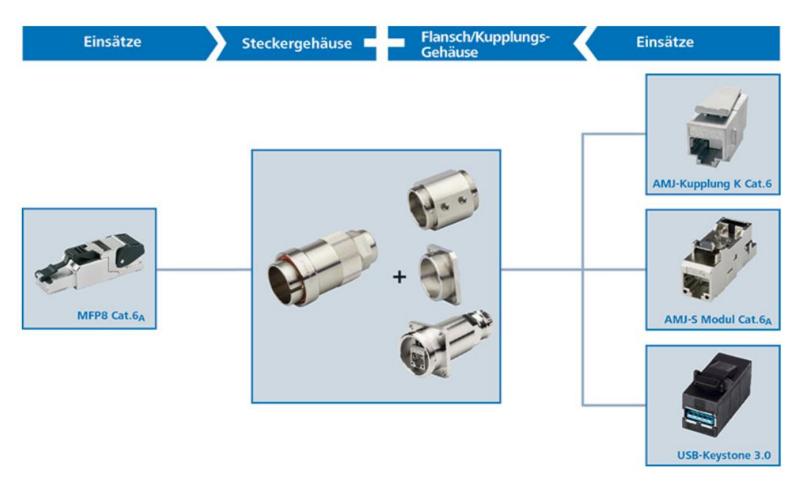
Q

Produktanfrage


NETZANWENDUNG MIT TWISTED-PAIR-KABEL

/RJ45 UND MODUL

Netzanwendung für aktive Komponenten	Kategorie der Komponente	Patchfeld (MHz)
10GBase-T, 5GBase-T, 2,5GBase-T	6 _A	Modul AMJ-K, AMJ-S, AMJ-SL, AMJ-SL 25G (500)


Verwendung der Module in Patchfeldern:

- Einbaulänge nicht relevant
- Design f\u00e4hig nicht relevant
- z.B. 1 HE, 48 Module
- Standard bei 1HE, 24 Module
- z.B. bei Nachinstallationen von vorn montierbar
- Wandverteiler f
 ür 6-,8-,12 bis 24 Module
- Potentialausgleich

TOC – BESONDERS ROBUST UND FÜR DEN AUßENBEREICH GEEIGNET

NEU AB ENDE JANUAR

NETZANWENDUNG MIT TWISTED-PAIR-KABEL

/RJ45

10GBase-T,

5GBase-T,

2,5GBase-T

Netzanwendung für aktive Komponenten	Kategorie der Komponente	Dose (MHz)
40GBase-T	8.1	AMJ Modul 8.1 (2000)
25GBase-T	8.1	AMJ Modul 8.1 (2000)

Verwendung der Dose:

- Brüstungskanal
- Bodentankeinbau
- Unter Putz
- Auf Putz

Anwendbare Kabel:

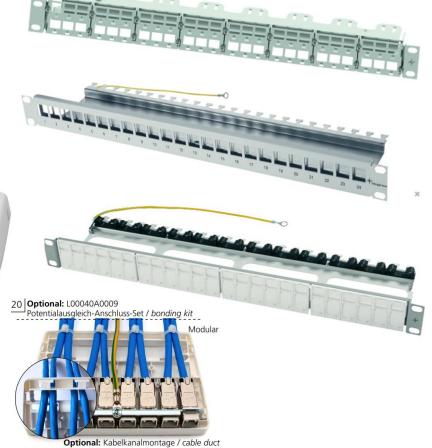
AMJ 2000

Design fähig

NETZANWENDUNG MIT TWISTED-PAIR-KABEL

/RJ45 MIT MODUL

Netzanwendung für aktive Komponenten	Kategorie der Komponente	Patchfeld ((MHz)
40GBase-T	8.1	AMJ Modul 8.1 (2000)
25GBase-T	8.1	AMJ Modul 8.1 (2000)


10GBase-T, 5GBase-T, 2,5GBase-T

- Einbaulänge nicht relevant
- z.B. 1 HE, 48 Module
- Standard bei 1HE, 24 Module
- z.B. bei Nachinstallation von vorn montierbar
- Wandverteiler f
 ür 6-,8-,12 bis 24 Module
- Potentialausgleich

AMJ Modul Cat.8.1, RJ45

- In Verbindung mit AMJ 2000 Datenkabel
- Messung nach DIN EN und ISO-Verkabelungsnorm der Klasse I, <u>Installationsstrecke (engl. permanent link)</u>
- bei 2000MHz, alle Komponenten auf 25GBase-T sowie 40GBase-T
- **Die Klasse I**, bewertet durch Messung, die Unsymmetriedämpfung
- Messung nach ISO/IEC TR (Anwendungsbericht)
 11801-9905, bei 1250 MHz auf 25GBase-T, <u>channel</u>
- Messung Verkabelungsnorm Klasse E_A
- 4PPoE bis 90W (die Funktion/Übertragung)
- Länge 34mm
- Design fähig
- Potentialanschluss: 2,8mm gem. DIN 46342-1 für Querschnitt Kupferdraht 1,5 mm²
- Leiterdimension: massiv: AWG23/1-22/1
- Vorteil: Nachweis aller Verkabelungsklassen nach ISO/EN/DIN abwärtskompatibel

AMJ-SL/25G Modul Cat.6_A, RJ45

- In Verbindung mit AMJ 2000 Datenkabel
- Messung nach ISO/IEC TR (Anwendungsbericht)
 11801-9905, bei 1250 MHz auf 25GBase-T,
 Übertragungsstrecke (engl. channel)
- Messung Verkabelungsnorm Klasse E_A
- 4PPoE bis 90W (die Funktion/Übertragung)
- Optimiertes Kontaktdesign zur Vermeidung von Abreißfunken im Kontaktruhebereich
- Kompatibilität: zu RJ45-Steckern und 12-/11-Steckern
- Länge 32mm
- Design fähig
- Potentialanschluss: 2,8mm gem. DIN 46342-1 für Querschnitt Kupferdraht 1,5 mm²
- Leiterdimension: massiv: AWG26/1-22/1 und Litze: AWG27/7-22/7
- Vorteil: Zusätzliche mechanische Ausfallsicherheit nur Nachweis Verkabelungsklasse E_A, D

die Netzanwendung und aktive Komponenten

AUTOMATISCHE AUSHANDLUNG DES SIGNALISIERUNGSMECHANISMUS IEEE 802.3

 Autonegotiation bezeichnet ein Verfahren, das es zwei miteinander verbundenen Ethernet-Netzwerkports erlaubt, selbständig die maximal mögliche Übertragungsgeschwindigkeit und das Duplex-Verfahren miteinander auszuhandeln sowie zu konfigurieren.

 Ab Gigabit-Ethernet (1GBASE-T bis 40GBASE-T) ist die Implementierung der Autonegotiation verpflichtend.

IEEE 802.3BQ

- Unter dem Label IEEE 802.3bq erschien 2016 ein neuer Ethernet-Standard für die <u>Anwendungen</u> 25GBase-T und 40GBase-T, der nunmehr Übertragungsraten von 25 GBit/s beziehungsweise 40 GBit/s über eine vierpaarige symmetrische Kupferverkabelung ermöglicht.
- Für diesen neuen Ethernet-Standard gibt es **neue** Übertragungsstrecken nach Klasse I (mit Kategorie-8.1-Komponenten RJ45) und Klasse II (mit Kategorie-8.2-Komponenten GG45).
- Nach ISO/IEC 11801, DIN EN 50173-1: 2018-10 sind diese mit einem Frequenzbereich von 2000 MHz ausgestattet und standardmäßig auf "größte Länge (m) = 32m gesamte Länge Rangierschnüre (m) × Verhältnis Einfügedämpfung" begrenzt.
- Die Übertragungsstrecken sind als Übertragungsstrecke (engl. channel) incl. Patchkabel und als Installationsstrecke (engl. permanent link) definiert. Die Installationsstrecke wird in Projekten als messtechnischer Nachweis gefordert.
- Allerdings kommt die <u>Anwendung</u> 25GBase-T mit einem Frequenzbereich von lediglich 1,25 GHz aus. Deshalb verfügen die Übertragungsstrecken nach Klasse I und II, bezogen auf die <u>Anwendung</u> 25GBase-T, größere Leistungsreserven.
- Der <u>Anwendungsbericht</u> ISO/IEC TR 11801-9905:2018,ISO/IEC TR 11801-9909:2020 ist ein Technischer Bericht, er behandelt die Bewertung und Empfehlungen zur Erreichung einer erweiterten Reichweite von mehr als 30 m für 25 Gbit/s-Anwendungen über symmetrische Verkabelungskanäle bei 1250MHz, als Übertragungsstrecke (Channel).

Klasse I

Zertifikat

Nr. z8788a-24

Auftraggeber:

Telegärtner Karl Gärtner GmbH Lerchenstraße 35 71144 Steinenbronn, Deutschland

Prüfling(e):

Symmetrisches Kupferkabel: Telegartner AMJ1400 S/FTP AWG23/1 Cat.7x LSZH

Telegärtner Patchkabel PC RJ45(V1)-RJ45(V1) SFTP C6x LSZH

Art -Nr - 100028020

Telegärtner AMJ-SL Modul 256

Art.-Nr.: 100128120, 100128124, 100128125, 100128126 Type A/B zwei Verpackungsgrößen

Bewertungsstandard(s):

ISO/IEC 11801-1 Ed.1.0 (2017-11) DIN EN 50173-1 (2018-10)

Der Prüfling hält bei den im Prüfbericht genannten Prüfparametern die Grenzwerte der besagten Bewertungsstandards ein.

2 Connector Channel Kupfer, Klasse I bis 1,25 GHz (30m)

GHMT Type Approval

Die bei der Prüfung ermittelten Ergebnisse beziehen sich auf den beschriebenen und vom Auftraggeber vorgelegten Prüfling. Zukünftige technische Änderungen der geprüften Produkte unterliegen dem Verantwortungsbereich

Dieses Zertifikat verweist auf den ausführlichen Nr. R8788a-24 und ist nur in Verbindung mit diesem gültig. Dieses Zertifikat ist nach Prüfdatum 24 Monate gültig.

In der Kolling 320 D-66450 Bexbech

Postfach 11 16

Bexbach, 30.07

Dipl.-Ing. Dirk W

(Vorstandsvorsitz

Die Anwendung IEEE 802.3bg 25GBase-T kommt mit einem Frequenzbereich von lediglich 1,25 GHz aus. Deshalb verfügen die Übertragungsstrecken nach Klasse I und II, bezogen auf die Anwendung 25GBase-T, größere Leistungsreserven.

Zertifikat

Nr. z8789a-24

Auftraggeber:

Telegärtner Karl Gärtner GmbH Lerchenstraße 35 71144 Steinenbronn, Deutschland

Klasse I

Prüfling(e):

Symmetrisches Kupferkabel:

Telegartner AMJ2000 S/FTP 4x2xAWG23/1 Cat.8.2 LSZH blue, Dca-s2,d1,a1 Art.-Nr.: 100013194

Symmetrische Kupferschnur:

Telegärtner Patchkabel PC RJ45(V1)-RJ45(V1) SFTP C6x LSZH

Steckverbinder:

Telegärtner AMJ-SL Modul 256

Art.-Nr.: 100128120, 100128124, 100128125, 100128126 Type A/B zwei Verpackungsgrößen

Bewertungsstandard(s):

ISO/IEC 11801-1 Ed.1.0 (2017-11)

DIN EN 50173-1 (2018-10)

Der Prüfling hält bei den im Prüfbericht genannten Prüfparametern die Grenzwerte der besagten Bewertungsstandards ein.

2 Connector Channel Kupfer, Klasse I bis 1,25 GHz (30m)

GHMT Type Approval

Die bei der Prüfung ermittelten Ergebnisse beziehen sich auf den beschriebenen und vom Auftraggeber vorgelegten Prüfling. Zukünftige technische Änderungen der geprüften Produkte unterliegen dem Verantwortungsbereich

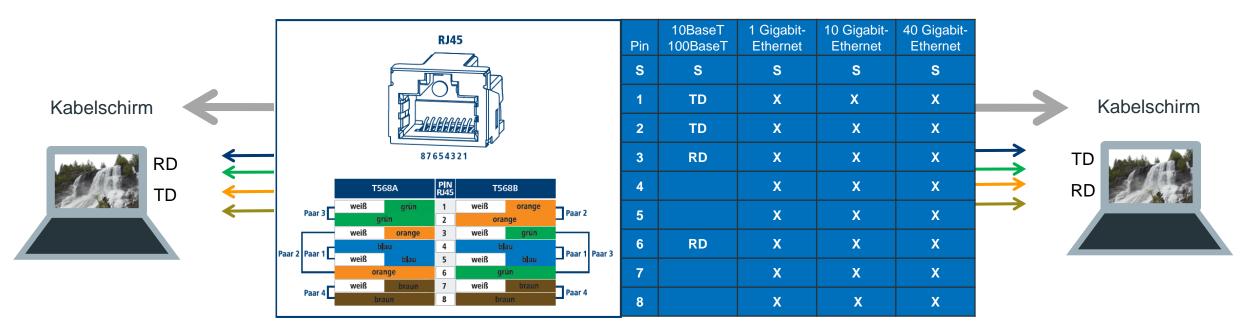
ausführlichen Nr. R8789a-24 und ist nur in Verbindung mit diesem gültig. Dieses Zertifikat ist nach Prüfdatum 24 Monate gültig.

In der Kolling 320 0-66450 Bexbach

Postfach 11 16 D-66442 Bexbach

T: +49 6826 92 28-0 F: +49 6826 92 28-290

info@ghmt.de


HOCHVERFOGBARKEIT IM GANZEN BEDINGT PRĀZISION IM DETAIL.

SIGNALÜBERTRAGUNG MIT TWISTED-PAIR-KABEL

Verkabelung: ISO, EN, DIN

IEEE

- TD = Transmitted Data (Sendedaten),
- RD = Received Data (Empfangsdaten) ,
- X = TD und RD (Senden und Empfangen)

Netzanwendung und Verkabelungsklasse DIN EN 50173-1:2018-10	10 Base-T 2017	1 GBase-T 2017	Fibre Channel 1 Gbit/s 2007	2,5 GBase-T 2017	5 GBase-T 2017	10 GBase-T 2017	HDBase-T IEEE 1911.2 zurückgezogen 2015	FC-100-DF-EL-S	25 GBase-T 2017	40 GBase-T 2017
Klasse C RJ45 (16MHz)	✓									
Klasse D RJ45 (100MHz)	✓	✓	✓							
Klasse E RJ45 (250MHz)	×	×	×	×	×	×	×	×	×	×
Klasse E _A RJ45 (500MHz)	✓	✓	✓	✓	✓	√	✓			
Klasse I RJ45 (2000MHz)	✓	✓	✓	✓	✓	✓	✓		✓	√
Klasse F kein RJ45 (600MHz)								√		
Klasse F _A kein RJ45 (1000MHz)	×	×	×	×	×	*	×	×	×	×

Es wird erwartet, dass die anwendungsneutrale Kommunikationskabelanlage nach DIN EN 50173 eine Lebenserwartung von mehr als 10 Jahren hat.

LINK KLASSE UND RL DIN EN 50173-1

Quelle DIN EN 50173-1: 2018-10

Komponentenkategorie	Klasse D (100MHz)	Klasse E _A (500MHz)	Klasse I (2000MHz)
Kleinste Rückflussdämpfung bei einer Frequenz von 100MHz	10 dB	12 dB ca.40% besser wie Klasse D	16 dB 100% besser wie Klasse D
Kleinste Rückflussdämpfung bei einer Frequenz von 500MHz		6 dB	10,7 dB ca.80% besser wie Klasse E _A

Dämpfung:1,5dB = 35% bei 3,0dB = 50% bei 5,0dB = 80%

- Klasse I, garantiert mehr Sicherheit in der Funktion für alle abwärts kompatiblen Anwendungen
- Durch den Nachweis der *Klasse I* (alle Komponenten bei 2000MHz) wird RL und z.B. zusätzlich die *Unsymmetriedämpfung mit bewertet*.

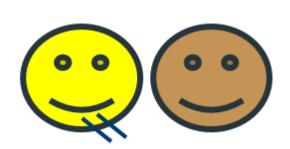
LINK-KLASSE / STÖR-SICHERHEIT (RL) / STRECKEN-LÄNGE

Die Netzanwendung der **aktiven Komponenten Ethernet IEEE-Norm 802.3..** und die dazugehörige Linkklasse oder Anwendungsbericht.

Die Linkklasse und die **Länge/Ausdehnung** ist immer von der Frequenz abhängig die genutzt wird.

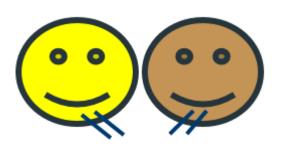
10 Base-T halbduplex	Klasse C
100 Base-T halbduplex	Klasse D
1 GBase-T vollduplex	Klasse D
2,5-10 GBase-T vollduplex	Klasse E _A
25 GBase-T, TR, vollduplex	Class I
25-40 GBase-T vollduplex	Klasse I

Temperaturerhöhung und PoE verkürzt die Längen, siehe DIN EN 50174-2 2018


Klasse C, 16MHz	188m - Patchkabel
Klasse D, 100MHz	PL 117m - Patchkabel
Klasse D, 100MHz	PL 117m - Patchkabel
Klasse E _A , 500MHz	PL 102m - Patchkabel
Class I, 1250MHz	CH ca.32m incl. Patchkabel
Klasse I, 2000MHz	PL 32m - Patchkabel

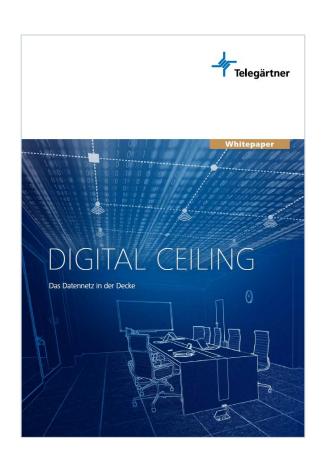
Klasse D	Qualität in Bezug auf RL 10dB, Sicherheit in der Übertragung des Ethernet-Signals vollduplex
Klasse E _A	40% mehr Sicherheit wie Klasse D, in der Übertragung des Ethernet-Signals vollduplex
Klasse I	100% besser wie Klasse D und ca. 80% besser wie Klasse E _A , bei Ethernet-Signals vollduplex Abwärtskompatibel für alle Längen und Linkklassen, beste Qualität nach ISO, EN, DIN

SIGNALÜBERTRAGUNG ZWISCHEN RECHNERN



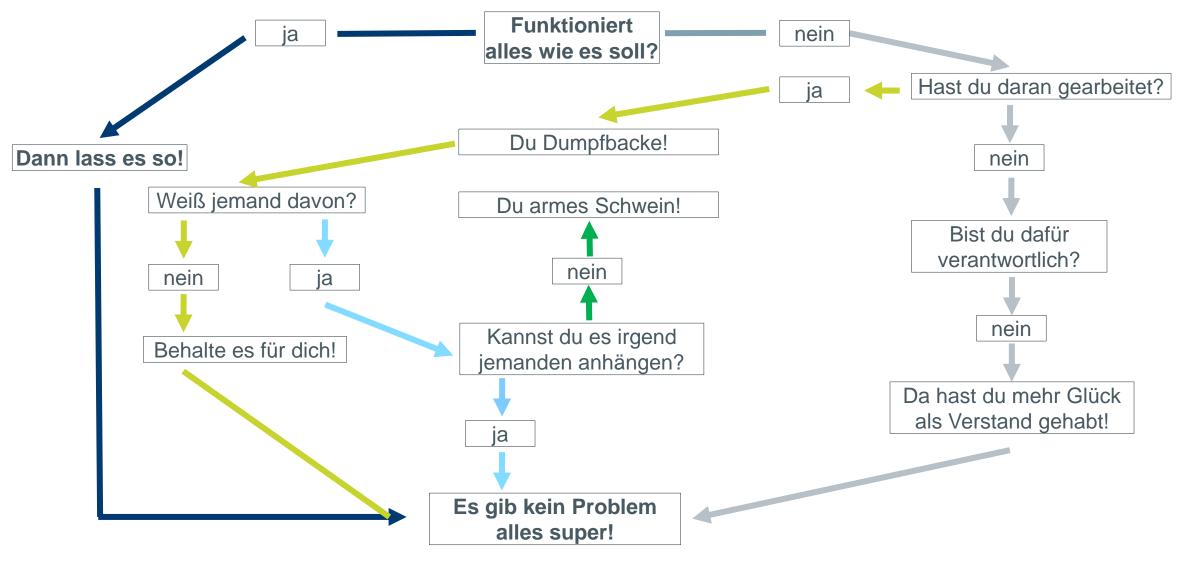
Entscheidend für das Ethernet Signal ist, Wellenwiderstand/Rückflussdämpfung, Störer,

Konstruktion der Komponenten bei POE, und Frequenz für die Bandbreite/Länge.



WIR HALTEN SIE AUF DEM LAUFENDEN

Mit Whitepaper, Standpunktpapieren, Themenspecials und natürlich gerne persönlich.



Problemlösung einfach erklärt

KUPFER VERKABELUNG MIT RJ45

ZUSAMMEN-FASSUNG

Billig, muss man sich leisten können.

- IEEE, Vorgaben Standardisierung von aktiven Komponenten und Software
- Ab 1GBase-T bis 40GBase-T, Voll-Duplex
- zukünftige Bandbreiten werden <u>nicht</u> bei 500MHz realisiert
- Netzanwendung 25GBASE-T, IEEE.802bq, 2000 MHz, PAM16
- Ethernet überträgt ein symmetrisches Signal und das ist abhängig von der Symmetrie der Verkabelung
- IEEE brauch eine sehr gute Signalqualität deshalb neue Produktqualität
- Netzanwendungen und Verkabelungsklassen sind in der DIN EN 50173-1
- Die beste Symmetrie garantiert die Signalqualität bei Vollduplex
- Die Rückflussdämpfung (Symmetrie der Verkabelung) der Klasse I ist ca. 80% besser wie Klasse E_A und 100% besser wie Klasse D
- Das Modul AMJ Cat.8.1 RJ45 sowie das Kabel AMJ2000 Cat.8.2 funktioniert bei allen Installationsstrecken, und Längen (abwärtskompatibel)
- "Störer" nehmen zu z.B. Funkkommunikation, Induktionsheizung usw.
- POE benötigt ein optimiertes Kontaktdesign und Kabelsymmetrie (RL)
- Fachgerechte Installation und Nachweis dieser durch Systemgarantie

"Störungen gehören zum Alltag, die Qualität (Z/RL/MHz) der "Datenstraße" kann man auswählen, mit dem Ziel, Störsicherheit für zukünftige Datennetze"

Vielen Dank für Ihre Aufmerksamkeit

Falk Klaus Krüger

- Elektroinstallateur
- Dipl.-Ing. (FH) Elektrotechnik
- VdS Sachkundiger f
 ür Gebäude-Infrastruktur-Verkabelung
- Mitarbeit im DIN Ausschuss Elektrotechnik / Bauwesen GAEB AK LB 061 und AK LB 062
- Lehrauftrag Hochschule Meißen (FH)

Systemberater Data Voice Deutschland Technisches Büro Telegärtner Wiesenweg 9, 01968 Kleinkoschen

Tel.: +49 (0) 7157-125-5212

Mobil: +49 (0) 160 - 90772774

E-Mail: falk.krueger@telegaertner.com

web: www.telegaertner.com

