

K2 Base Bericht

Aktionsanlage CS 395

Projektadresse 25451 Quickborn, Deutschland

Bearbeiter Andreas Kern

Ausgabedatum & Version 14.08.2023 | K2 Base Version 3.1.90.1

Über uns

K2 Systems. Innovatives Befestigungssystem von einem starken Team.

Seit 2004 entwickeln wir wegweisende und hochfunktionale Montagesystemlösungen für Photovoltaikanlagen auf der ganzen Welt. Unsere Systeme werden in unserer eigenen Produktentwicklungsabteilung konzipiert, in der wir Montagesysteme kontinuierlich optimieren und an den sich ständig ändernden Markt anpassen.

Ein kompetentes und freundliches Team

Wie ein Bergsteigerteam baut K2 Systems auf gegenseitiges Vertrauen. Das gilt sowohl für unseren Kundenservice als auch im Unternehmen selbst, denn wir glauben, dass eine vertrauensvolle Partnerschaft zu erfolgreichen Photovoltaikprojekten führt.

Unsere Mitarbeiter konzentrieren sich voll und ganz auf die Bedürfnisse und Wünsche unserer Kunden. Das gilt für alle Unternehmensbereiche.

10 Standorte und weltweites Vertriebsnetz

In unserem internationalen Team arbeiten alle zusammen, um Kunden kompetent, umfassend und ganz persönlich zu betreuen.

Dies gilt insbesondere für die ständige Weiterbildung unserer Mitarbeiter im Hinblick auf Produktoptimierung, Qualitätssicherung oder bautechnische Neuerungen.

Qualitätsmanagement und Zertifikate

K2 Systems steht für sichere Verbindungen, höchste Qualität und präzis gefertigte, individuelle Komponenten. Unsere Kunden und Geschäftspartner schätzen all diese Faktoren sehr. Drei unabhängige Stellen haben unsere Kompetenzen und Komponenten geprüft, bestätigt und zertifiziert. Nicht nur externe Stellen haben K2 Systems auf den Prüfstand gestellt. Unsere interne Qualitätskontrolle stellt sicher, dass alle unsere Produkte einem ständigen Überprüfungsprozess unterzogen werden.

All diese Maßnahmen sichern den herausragenden Qualitätsstandard, der die Produkte von K2 Systems auszeichnet und den wir durch ein weitgehend exklusives "Made in Germany" bzw. "Made in Europe" sicherstellen.

Produktgarantie

K2 Systems bietet eine 12-jährige Produktgarantie auf alle Produkte in seinem integrierten Sortiment. Die Verwendung hochwertiger Materialien und eine dreistufige Qualitätsprüfung stellen diese Standards sicher.

Kurzgesagt

Als Aufdachspezialist bieten wir weltweit effektive und wirtschaftliche Lösungen für Dächer und unterstützen unsere Kunden aus der Solarbranche professionell, schnell und zuverlässig.

Inhalt

Projektübersicht	L
Dach 1	6
Montageplan	8
Ergebnisse	10
Statikbericht	13
Artikelliste	18

$\langle \rangle$

Projektübersicht

Projektinformation

Name Aktionsanlage CS 395

Adresse 25451 Quickborn, Deutschland

Geländehöhe 22,93 m
Bearbeiter Andreas Kern

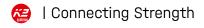
Lasten

Bemessung DIN EN
Schadensfolgeklasse CC2
Nutzungsdauer 25 Jahre

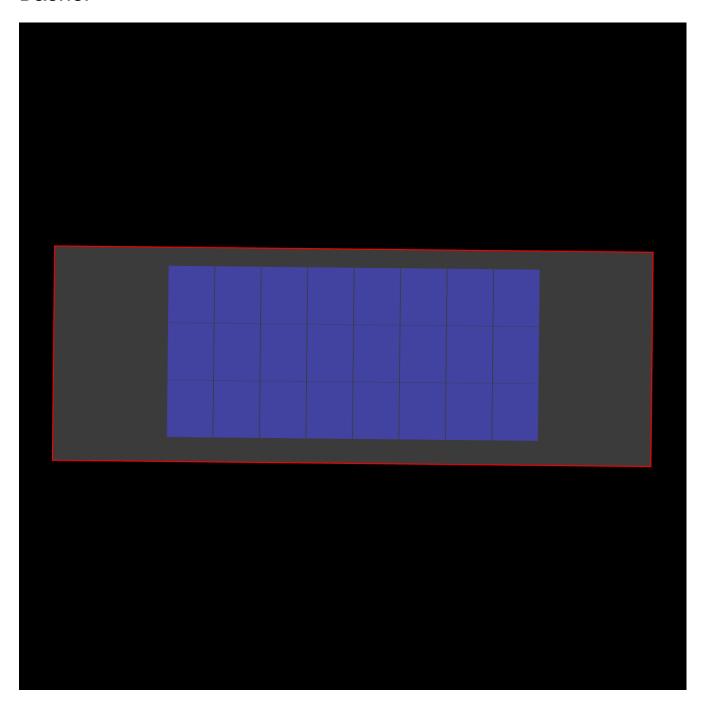
Geländekategorie II - Landwirtschafts-/Farmlandgebiet

Windlastzone 3
Schneelastzone 2

Bodenschneelast 0,85 kN/m²


Dächer

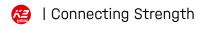
Summe	l			24	9,48 kWp
Dach 1	<u>SingleRail</u>	Sapphire 395M108 full black	395 Wp	24	9.48 kWp
Dach	System	Modul	Leistung	Stückzahl	Gesamtleistung



DAS PROJEKT IST VERIFIZIERT.

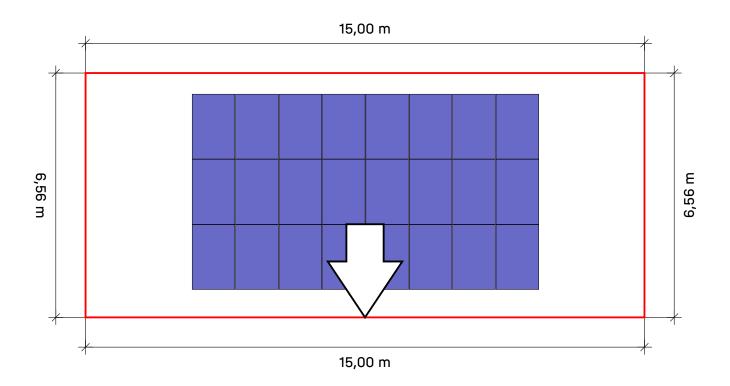
Das gewählte Montagesystem kann wie geplant gebaut werden. Vielen Dank, dass Sie sich für ein K2 Montagesystem entschieden haben.

Dächer



Projektinformation

Name Aktionsanlage CS 395


Adresse 25451 Quickborn, Deutschland

Geländehöhe 22,93 m
Bearbeiter Andreas Kern

Dächer | Dach 1

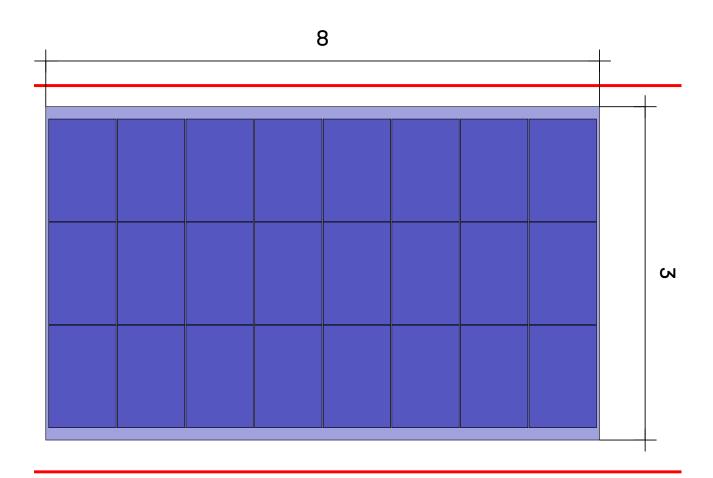
Dach	System	Modul	Leistung	Stückzahl	Gesamtleistung
Dach 1	SingleRail	Sapphire 395M108 full black	395 Wp	24	9.48 kWp

Dächer | Dach 1 | Montageplan

Basisschiene

	ganze Schienen			nze Schienen Zuschnitt			
Тур	Gesamtlänge	Anzahl 4,40 m	Anzahl 3,30 m	von Schiene	Länge	Rest	
Α	9,400		2	3,300	2,800		0,490

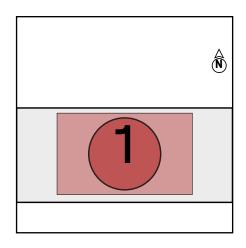
Befestigerabstand


Modul	Bereich	Distance
1	Feldbereich	0,90 m
1	Firstrand	0,90 m
1	Eckbereich (Traufe)	0,90 m
1	Traufrand	0,90 m

Modulfelder

Modulfeld	Breite[m]	Länge[m]	Breite in Modulen	Lange in Modulen
1	9,30	5,24	8	3

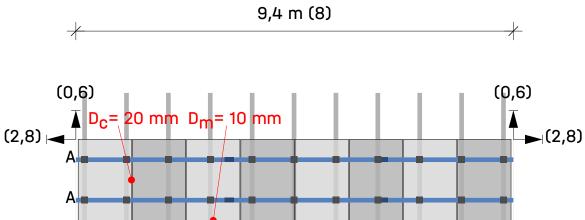
Dächer | Dach 1 | Modulfeld 1

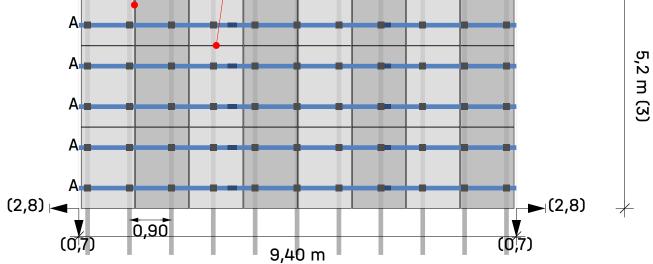

Montagesystem Modul

Reihenabstand

<u>SingleRail</u>

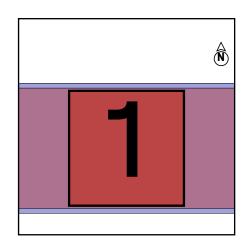
 $24(9.48 \text{ kWp}) \times \text{Sapphire}$ 395M108 full black


1,75 m



Dächer | Dach 1 | Modulfeld 1 | Modulblöcke

Modulfeld 1 Modulblock 1 Dach



Module

8 × 3 = **24**

Legende

- Befestiger
- Montageschiene: K2 SingleRail 36
- Abstand zum Dachrand [m]
- Dc Abstand zum Klemmen zwischen Modulen
- Dm Abstand zwischen den Modulen

Ergebnisse | Dach 1

Dach	System	Modul	Leistung	Stückzahl	Gesamtleistung
Dach 1	<u>SingleRail</u>	Sapphire 395M108 full black	395 Wp	24	9.48 kWp

Modul

Name Sapphire 395M108 full black

Hersteller CS Wismar GmbH

Leistung 395 Wp

Abmessungen 1.740×1.145×35 mm

Gewicht 22,0 kg

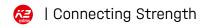
Komponenten

Befestiger SingleHook 4S
Basisschienen K2 SingleRail 36

Lasten auf Module (Moduldimensionierung)

Bereich	A-TrA [m²]	Nachweis Tragsicherheit [Pa]		A-TrA					glichkeit
	2	Druck 1	Druck II	Abheben L	Abheben II	Druck ⊥	Druck II	Abheben ⊥	Abheben II
Feldbereich	1,99	1.017,4	638,1	-1.280,2	69,2	688,1	316,5	-820,6	69,2
Firstrand	1,99	1.017,4	638,1	-1.280,2	69,2	688,1	316,5	-820,6	69,2
Eckbereich (Traufe)	1,99	1.283,7	638,1	-1.647,1	69,2	865,7	316,5	-1.065,1	69,2
Traufrand	1,99	1.283,7	638,1	-1.280,2	69,2	865,7	316,5	-820,6	69,2

Ergebnis Auslastung


Spannung

σ

		Tra	gfähig	keit	GebT	Abstäi	nde	Maxir	malwerte
Nr.	DachBereiche	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Modulf	eld	σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	Fst D _{max} [m]
1	Feldbereich	26,4	7,3	62,3	11,0	0,900		0,560	1,445
1	Firstrand	26,4	7,3	62,3	11,0	0,900		0,560	1,445
1	Eckbereich (Traufe)	31,3	8,7	72,7	13,6	0,900		0,528	1,237
1	Traufrand	31,3	0,0	72,7	13,6	0,900		0,528	1,237
Pr	Profil			Fst D _{max}	x maximaler Abstand Befestiger				
Fst	Befestiger			BR	Basisschiene				

Usab.

Gebrauchstauglichkeit

Ergebnisse | Dach 1

f Durchbiegung CL Kragarm

F Kraft

 $\mathrm{CL/L_{max}}$ maximale Länge des Kragarms

Ergebnisse | Dach 1

Notizen

- Die Bemessungsregeln entsprechen dem Eurocode EN 1990 Grundlage der Tragwerksplanung.
- Die Ermittlung der Schneelasten erfolgt nach dem nationalen Anhang DIN EN 1991-1-3/NA Schneelasten.
- Die Ermittlung der Windlasten erfolgt nach dem nationalen Anhang DIN EN 1991-1-4/NA Windlasten.
- Die Nutzungsdauer wurde gemäß "Eurocode EN 1991 Einwirkungen auf Tragwerke, Schneelasten" und "Eurocode EN 1991 Einwirkungen auf Tragwerke, Windlasten" berücksichtigt.
- Die Schadensfolgeklasse wurde gemäß "Eurocode EN 1990 Grundlage der Tragwerksplanung" berücksichtigt.
- Daten und Ergebnisse müssen im Hinblick auf die Gegebenheiten vor Ort verifiziert und von einer fachlich hinreichend qualifizierten Person geprüft werden. Bitte beachten Sie unsere unter http://k2systems.com/de/base-anb abrufbaren Allgemeinen Nutzungsbedingungen (ANB), insbesondere § 2 ("Technische und fachliche Voraussetzungen beim Kunden"), § 7 ("Gewährleistungsbeschränkung") und § 8 ("Haftungsbeschränkung").

Allgemeine Informationen

Name Aktionsanlage CS 395

Montagesystem SingleRail
Bearbeiter Andreas Kern

Standortinformationen

Adresse 25451 Quickborn, Deutschland

Geländehöhe 22,93 m

Informationen zum Dach

Gebäudehöhe 8,00 m
Dachtyp Satteldach

Dachneigung 35°

Befestigungsmethode In Dach-Unterkonstruktion

Eindeckung Ziegel min. Randabstand 0,00 m Sparrenabstand 0,900 m 80,0 mm Sparrenbreite Nein Randsparren links setzen 300,0 mm Sparrenabstand links Sparrenabstand rechts Nein Sparrenabstand 300,0 mm Lattenabstand 340,0 mm

Lasten

Bemessung DIN EN
Schadensfolgeklasse CC2
Nutzungsdauer 25 Jahre

Geländekategorie II - Landwirtschafts-/Farmlandgebiet

Windlast

Windlastzone 3

Geschwindigkeitsdruck $q_{p,50} = 0,936 \text{ kN/m}^2$

Anpassungsfaktor für $f_w = 0.901$

Nutzungsdauer

Geschwindigkeitsdruck $q_{p,25} = 0.843 \text{ kN/m}^2$

DachBereiche

Bereich	Lasteinflussflaeche [m²]	maxCpe ₁₀	minCpe ₁₀	Winddruck [kN/m²]	WindSog [kN/m²]
Feldbereich	10,00	0,467	-0,833	0,394	-0,703
Firstrand	10,00	0,467	-0,833	0,394	-0,703
Eckbereich (Traufe)	10,00	0,700	-1,100	0,590	-0,928
Traufrand	10,00	0,700	-0,833	0,590	-0,703

Schneelast

2	
Nein	
$\mathbf{S}_{\mathbf{k}}$	$= 0.850 \text{ kN/m}^2$
μ_{i}	= 0,667
\mathbf{d}_{i}	= 0,819
S _{i,50}	$= 0,464 \text{ kN/m}^2$
f_s	= 0,929
S _{i,25}	$= 0,431 \text{ kN/m}^2$
S_Ad	= 1,955 kN/m ²
S _{i,Ad}	= 0,992 kN/m ²
	Nein S_k μ_i d_i $S_{i,50}$ f_s $S_{i,25}$ S_{Ad}

Eigenlast

Gewicht des Moduls	\mathbf{G}_{M}	= 22,0 kg
Gewicht des Montagesystems pro Modul		= 2,5 kg
Modulfläche	\mathbf{A}_{M}	= 1,99 m ²
Eigengewicht des Moduls pro m²		= 11,04 kg/m ²
Eigengewicht des Montagesystems pro m²		= 1,25 kg/m ²
Gesamte Eigenlast (ohne Ballast) pro m²		= 0,12 kN/m ²

Lastfallkombinationen

Tragfähigkeit

Teilsicherheitsbeiwert ständig ungünstig (STR)	$\gamma_{\text{G,sup}}$	= 1,35
Teilsicherheitsbeiwert ständig günstig (STR)	$\gamma_{\text{G,inf}}$	= 1,00
Teilsicherheitsbeiwert ständig destab. (EQU)	$\gamma_{\text{G,dst}}$	= 1,10
Teilsicherheitsbeiwert ständig stab. (EQU)	$\gamma_{\text{G,stb}}$	= 0,90
Teilsicherheitsbeiwert erster veränderlicher	$\gamma_{\scriptscriptstyle Q}$	= 1,50
Teilsicherheitsbeiwert n veränderliche	$\gamma_{\scriptscriptstyle Q}$	= 1,50
Teilsicherheitsbeiwert außergewöhnlich	γ_{A}	= 1,00
Kombinationsbeiwert für Wind	$\psi_{\text{o},w}$	= 0,60
Kombinationsbeiwert für Wind (weitere veränderliche Einwirkungen)	$\psi_{\text{1,W}}$	= 0,20
Kombinationsbeiwert für Schnee	$\psi_{\text{o,s}}$	= 0,50
Bedeutungsbeiwert ständig	$\mathbf{K}_{\mathrm{Fl,G}}$	= 1,00
Bedeutungsbeiwert veränderlich	$\mathbf{K}_{\mathrm{Fl,Q}}$	= 1,00
Bedeutungsbeiwert außergewöhnlich	$\mathbf{K}_{\mathrm{Fl,A}}$	= 1,00

LFK 01	$E_d = \gamma_{G,sup} * \kappa_{Fl,G} * G_k + \gamma_Q * \kappa_{Fl,Q} * S_{i,n}$
LFK 02	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * W_{k,Pressure}$
LFK 03	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * (W_{k,Pressure} + \psi_{0,S} * S_{i,n})$
LFK 04	$E_{d} = \gamma_{G,sup} * \kappa_{Fl,G} * G_{k} + \gamma_{Q} * \kappa_{Fl,Q} * (S_{i,n} + \psi_{0,W} * W_{k,Pressure})$
LFK 05	$E_{d} = \kappa_{Fl,G} * G_{k} + \gamma_{A} * \kappa_{Fl,A} * S_{ad,n} + \kappa_{Fl,Q} * \psi_{1,W} * W_{k,Pressure}$
LFK 06	$E_d = \gamma_{G,inf} * G_k + \gamma_0 * \kappa_{FL,0} * W_{k,Uplift}$

Gebrauchstauglichkeit

Kombinationsbeiwert für Wind	$\psi_{o,}$	= 0,60
	W	
Kombinationsbeiwert für Schnee	$\psi_{\text{o,s}}$	= 0,50
Kombinationsbeiwert für Wind (weitere veränderliche Einwirkungen)	$\psi_{1,W}$	= 0,20

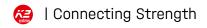
LFK 01	$E_d = G_k + S_{i,n}$
LFK 02	$E_d = G_k + W_{k,Pressure}$
LFK 03	$E_d = G_k + W_{k,Pressure} + \psi_{0,S} * S_i$
LFK 04	$E_d = G_k + S_{i,n} + \psi_{0,W} * W_{k,Pressu}$
LFK 06	$E_d = G_k + W_{k,Uplift}$

Maximale Belastung der Module (Dimensionierung des Befestigungssystems)

Bereich	A-TrA [m²] .	Nachw	veis Trag	sicherheit	[kN/m²]	Nachwe	eis Gebrau	ichstauglich m²]	nkeit [kN/
		Druck ⊥	Druck II	Abheben L	Abheben II	Druck ⊥	Druck II	Abheben ⊥	Abheben II
Feldbereich	10,00	1,017	0,638	-0,955	0,069	0,688	0,317	-0,604	0,069
Firstrand	10,00	1,017	0,638	-0,955	0,069	0,688	0,317	-0,604	0,069
Eckbereich (Traufe)	10,00	1,284	0,638	-1,293	0,069	0,866	0,317	-0,829	0,069
Traufrand	10,00	1,284	0,638	-0,955	0,069	0,866	0,317	-0,604	0,069

Maximale Einwirkungen pro Befestiger

Bereich	A-TrA [m²]	Nac	hweis Tra	agsicherhei	t[kN]	Nach	weis Geb	rauchstaug [kN]	ılichkeit
		Druck ⊥	Druck II	Abheben L	Abheben II	Druck ⊥	Druck II	Abheben ⊥	Abheben II
Feldbereich	10,00	0,876	0,550	-0,823	0,060	0,593	0,273	-0,520	0,060
Firstrand	10,00	0,876	0,550	-0,823	0,060	0,593	0,273	-0,520	0,060
Eckbereich (Traufe)	10,00	1,106	0,550	-1,113	0,060	0,746	0,273	-0,714	0,060
Traufrand	10,00	1,106	0,550	-0,823	0,060	0,746	0,273	-0,520	0,060


Widerstandswerte der Komponenten

Basisschiene

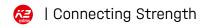
Basisschiene	[cm ²]	[cm^4]	[cm^4]	[cm ³]	W _z [cm ³]
K2 SingleRail 36	2,850	4,02	6,37	2,14	3,09

Befestiger

Befestiger	$R_{D, Sog, Senkrecht}[kN]$	$R_{D,Druck,Senkrecht}$ [kN]	$R_{D,Druck,Parallel}$ [kN]
SingleHook 4S	1,90	1,64	2,03

Ergebnis Auslastung

		Tragfähigkeit		GebT	Abstä	nde	Maxir	nalwerte	
Nr.	DachBereiche	Pr	CL	Fst	Pr	Fst	BR	CL	Fst
Modulfeld		σ[%]	σ[%]	F[%]	f[%]	[m]	[m]	$L_{max}[m]$	$Fst\;D_{max}[m]$
1	Feldbereich	26,4	7,3	62,3	11,0	0,900		0,560	1,445
1	Firstrand	26,4	7,3	62,3	11,0	0,900		0,560	1,445
1	Eckbereich (Traufe)	31,3	8,7	72,7	13,6	0,900		0,528	1,237
1	Traufrand	31,3	0,0	72,7	13,6	0,900		0,528	1,237


Pr Profil Fst D_{max} maximaler Abstand Befestiger Basisschiene Fst Befestiger BR Gebrauchstauglichkeit Spannung Usab. σ f Durchbiegung CL Kragarm F Kraft CL/L_{max} maximale Länge des Kragarms

Artikelliste

Position	Art-Nr.	Artikel	Anzahl	Gewicht
1	2003144	SingleHook 4S	66	36,5 kg
2	2004112	Wood screw 8×100	132	3,6 kg
3	2002589	OneEnd Black Set 30-42	12	1,0 kg
4	2003072	OneMid Black Set 30-42	42	3,3 kg
5	1004767	SingleRail 36 End Cap	12	0,1 kg
6	2003523	BlackCover SingleRail 36	12	0,3 kg
7	2002473	Lightning protection MH Set	6	0,6 kg
8	2002870	K2 Solar Cable Manager	24	0,1 kg
9	2003221	SingleRail 36; 3.30 m	18	63,7 kg
10	2001976	SingleRail 36 RailConnector Set	12	4,5 kg
Summe				113,7 kg

Vielen Dank, dass Sie sich für ein K2 Montagesystem entschieden haben.

Die Systeme von K2 Systems sind schnell und einfach zu installieren. Wir hoffen, dass diese Anleitung hilfreich war. Bitte kontaktieren Sie uns, wenn Sie Fragen oder Verbesserungsvorschläge haben.

Unsere Kontaktdaten:

k2-systems.com/en/contact

Service Hotline: +49 (0)7159 42059-0

Es gelten unsere Allgemeinen Geschäftsbedingungen. Weitere Informationen finden Sie unter <u>k2-systems.com</u>

K2 Systems GmbH

Industriestraße 18
71272 Renningen
Germany
+49 (0)7159 42059-0
+49 (0)7159 42059-177
info@k2-systems.com
www.k2-systems.com